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Abstract. This paper addresses the problem of clustering images of ob-
jects seen from different viewpoints. That is, given an unlabelled set of
images of n objects, we seek an unsupervised algorithm that can group
the images into n disjoint subsets such that each subset only contains
images of a single object. We formulate this clustering problem under
a very broad geometric framework. The theme is the interplay between
the geometry of appearance manifolds and the symmetry of the 2D affine
group. Specifically, we identify three important notions for image cluster-
ing: the L2 distance metric of the image space, the local linear structure
of the appearance manifolds, and the action of the 2D affine group in
the image space. Based on these notions, we propose a new image clus-
tering algorithm. In a broad outline, the algorithm uses the metric to
determine a neighborhood structure in the image space for each input
image. Using local linear structure, comparisons (affinities) between im-
ages are computed only among the neighbors. These local comparisons
are agglomerated into an affinity matrix, and a spectral clustering algo-
rithm is used to yield the final clustering result. The technical part of
the algorithm is to make all of these compatible with the action of the
2D affine group. Using human face images and images from the COIL
database, we demonstrate experimentally that our algorithm is effective
in clustering images (according to ojbect identity) where there is a large
range of pose variation.

1 Introduction

Given a collection of images, one may wish to group or cluster the images accord-
ing to many different attributes of the images and their content. For instance,
one may wish to cluster them based on some notion of human categories or tax-
onomies of objects. Or one might wish to cluster based on scene content (e.g.,
beach, agricultural, or urban scenes). Or perhaps one might wish to cluster all
images into groups with the same lighting or with the same pose (this might
only be relevant for images from a specific class such as faces [1]). In this paper,
we consider the problem of clustering images according to the identity of the 3D
objects, but where the observer’s viewpoint has varied between images.

Clearly, this type of image clustering problem requires understanding how
the images of an object vary under different viewing conditions, and so the



2

goal of the clustering algorithm is to detect some consistent patterns among the
images. A traditional computer vision approach to solve this problem would most
likely include some kind of image feature extraction, e.g., texture, shape, filter
bank outputs, etc. [2, 3]. The underlying assumption is that some global or local
image properties of a 3D object exist over a wide range of viewing conditions.
The drawback of such an approach is that it is usually difficult to extract these
features reliably and consistently. Appearance-based approaches e.g. [4, 5] offer
a different kind of strategy for tackling the clustering problem. For this type of
algorithm, image feature extraction no longer plays a significant role. Instead, it
is the geometric relations among images in the image space that is the focus of
attention. The geometric concept that is central to appearance-based methods
is the idea of an appearance manifold introduced in [6].

Our goal is to identify certain crucial geometric elements, such as the appear-
ance manifold, that are central to the image clustering problem and to formulate
a new clustering algorithm accordingly. Specifically, the two main contributions
of this paper are:

1. We formulate the image clustering problem under a very general geometric
framework. Using this framework, we provide a clear geometric interpretation
of our algorithm and comparisons between our work and previous image
clustering algorithms.

2. Motivated by geometric considerations, we propose a new image clustering
algorithm.

We have tested our algorithm on two types of image data: images in the Columbia
COIL database and images of human faces. Images of the 3D objects in the COIL
database have more variation in surface texture and shape. Therefore, local
image features can be extracted more reliably from these images [2]. For images
of human faces, the variations in texture and shape are much more limited, and
any clustering algorithm employing feature extractions is not expected to do
well. We will show that our algorithm is capable of producing good clustering
results for both types of image data.

2 Clustering Algorithm

In this section, we detail our image clustering algorithm. Schematically, our
algorithm is similar to other clustering algorithms proposed previously, e.g., [7,
4]. That is, we define affinity measures between all pairs of images. These affinity
measures are represented in a symmetric n×n matrix A = (aij), i.e., the affinity
matrix and a straightforward application of any standard spectral clustering
method [8, 9] then yields our clustering result. The machinery employed to solve
the clustering problem, i.e. spectral clustering, has been studied quite intensively
in combinatorial graph theory [10], and it is of no concern to us here. Instead,
our focus is on 1) explaining the geometric motivation behind our algorithm and
2) the definition of the affinity aij .

First, we define our image clustering problem. The input of the problem is a
collection of unlabelled images {I1, · · · , In} and the number of clusters N . We
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assume that all images have the same number of pixels s, and by rasterizing the
images, we obtain a collection of corresponding sample points {x1, · · · , xn} in IRs.
Our algorithm outputs a cluster assignment for these images ρ : {I1, · · · , In} →
{1, · · · , N}. Two images Ii and Ij belong to the same cluster if and only if
ρ(Ii) = ρ(Ij). A cluster, in our definition, consists of only images of one object.
We further assume that the images of a cluster are acquired at different view
points but under the same ambient illumination condition.

The problem so formulated is extremely general and without any further
information, there is almost no visible structure to base the algorithm on. One
obvious structure one can utilize is the ambient distance metric of the image
space. The usual L2 metric or its derivatives (affine-invariant L2 distance or
weighted L2 distance) are such examples. By considering images as points in IRs,
we are naturally led to the notion of appearance manifolds [6]. Accordingly, the
input images imply the existence of N sub-manifolds of IRs, {M1, · · · , MN} such
that two points xi, xj belong to the same cluster if and only if xi, xj ∈ Mk for
some 1 ≤ k ≤ N , with each Mi denoting the appearance manifold of an object.
Implicit in the concept of appearance manifolds is the idea of local linearity.
That is, if x1, · · · , xl are points belonging to the same cluster and if they are
sufficiently close according to the distance metric, then each point xi can be well-
approximated linearly by its neighbors : xk ≈ ∑

j �=k ajxj for some real numbers
aj .

Metric and local linearity are two very general geometric notions and they
do not pertain only to image clustering problems. It is the action of the 2D
affine group G 4 that characterizes our problem as an image clustering problem
rather than a general data clustering problem. If {x1, · · · , xn} were data of a
different sort, e.g. data from a meteological or high energy physics experiment,
there will not be an explicit action of G. It is precisely because the 2D nature
of the images and the way we rasterize the image to form points in IRs, we can
explicitly calculate the action of G given a sample point x. In particular, each
appearance manifold Mi is invariant under G, i,e, if x ∈ Mi then γ(x) ∈ Mi for
each γ ∈ G. In this sense, the clustering problem acquires a symmetry played by
the 2D affine group5. In summary, we have identified three important elements to
the image clustering problem. First, there is the ambient L2 (and its derivatives)
metric of the image space. Second, each cluster has local linear structure. The
metric and local linearity are the only two geometric structures we can utilize
in designing the algorithm. The third element is the affine symmetry of the
problem. Our challenge is to design a clustering algorithm that takes into account
these three elements. In a very general outline, what is needed is to design
metric and local linear structure that are both invariant under the affine group
G and to seek an interesting and effective coupling between the metric and
linear structure, which are two rather disparate geometric notions. Surprisingly,
using only these three very general structures, we can formulate a clustering

4 Henceforth, except at a few places, G will invariably denote the 2D affine group.
5 Strictly speaking, the symmetry group will depend on what type of imaging model

is used for the problem. In general, it will be a subgroup of G rather than G itself.
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algorithm which will be demonstrated to be effective for a variety of image
clustering problems. Our algorithm is compact and purely computational. Many
standard vision techniques, such as local feature extractions and PCA, will not
make their appearances in our algorithm.

The clustering problem we studied here is considerably more difficult than
the illumination clustering studied in [11]. The main difference between their
case and ours is a difference between global and local. In the illumination case,
the linear structure, the illumination cone, is a global structure and it can be
exploited directly in designing the clustering algorithm. In our case, the linear
structure is only a local structure and unlike the cone which admits a compact
and precise description via its generators, our local linear structure is more
difficult to quantify. Therefore, the exploitation of the local linear structure in
our algorithm is more subtle than in the illumination case.

2.1 Metric Structure

Since the input images are considered as a collection of points in IRs, the usual L2-
distance metric and its derivatives offer the simplest affinity measures between a
pair of data points. However, since the clusters form manifolds in IRs, they are not
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Fig. 1. Left(A) Three parallel circles. The points on each circle are uniformly sampled and the
distance between adjacent circles is slightly smaller than the distance between two neighboring
points on the same circle. Center(B) A ”magnified” view of a neighborhood. Right(C) The top
and bottom circles are rotated by ±30◦.

expected to localize in some region of IRs independently of other clusters. This
observation can be supported by the fact that the Euclidean distance between
two face images of different identities acquired at the same pose is almost always
smaller than the Euclidean distance of two images of the same identity but
acquired at different poses [12, 13]. Two analogous situations in 3D are depicted
in Figure 1. They clearly demonstrate that if the metric information is used for
defining affinity, then ”medium” and ”long-distance” comparisons are usually
erroneous.

However, Figure 1(B) suggests one good way of using the metric is not to use
it directly for comparison. Instead, we can use the metric to pick data points for
which the comparisons will be made. In particular, for each point x, the metric
defines a neighborhood and in this neighborhood, non-metrical information can
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be exploited to do the comparison (i.e., defining affinity). In this way, the metric
defines a collection of local clustering problems, and the affinities computed in
these local settings will then be put into the global affinity matrix to provide a
final clustering result.

2.2 Local Linear Structure (LLS)

Figure 1 shows two examples which are unlikely to be clustered correctly us-
ing the metric information along. Figure 1(A) is a good example. The data
collection contains points sampled uniformly from three circles in IR3. The dis-
tance between adjacent circles are slightly smaller than the distance between
two neighboring points on the same circle. To the best of our effort, we can not
correctly cluster the data into three circles using only metric information. The
point of course is that the manifold structure of the circles must be taken into
consideration. One possible way to use the manifold structure is to compute the
”tangent space” at each sample point using Principal Component Analysis in a
neighborhood of the sample point, as in [4]. This approach can correctly cluster
Figure 1(A) but unlikely6 to cluster Figure 1(C) correctly. This is mainly be-
cause the local linear estimate using PCA becomes unstable in the region when
the circles come into close contact with each other.

Instead of working with tangents, we shift our focus slightly to consider the
secant approximation of a sample point by its neighbors, see Figure 2(A). For a
smooth 2D curve, each point x can be approximated well by a point on the secant
chord formed by two of its sufficiently close neighbors y1, y2: x ≈ a1y1 + a2y2

with a1, a2 non-negative and a1 + a2 = 1. This can be generalized immediately
to higher dimension: for a point x and its neighbors, {y1, · · · , yK}, we can try
to compute a set of non-negative coefficients ωi which is the solution to the
following optimization problem:

min
∥∥∥ x −

K∑
i=1

ωiyi

∥∥∥
2

L2
(1)

with the constraint that
∑K

i=1 ωi = 1. Assuming {y1, · · · , yK} are linearly in-
dependent7, then the coefficients ωi are unique. Figure 2(B) illustrates that the
magnitude of the coefficients ωi can be used as an affinity measure locally to
detect the presence of any linear structure. That is, a large magnitude of ωi

indicates the possibility that yi and x share a common local linear structure.
Applying the idea we have outlined so far, a simple data clustering algorithm

can be designed8, and we can cluster all the examples above correctly. On the
other hand, to our best effort, we can’t find a simple and straightforward algo-
rithm, based on the more traditional clustering techniques such as the K-means
and connected component analysis, etc., that can successfully cluster all of these
examples.
6 To the best of our effort!
7 In the image space IRs, this is almost always true since K � s.
8 Compute ωi for each sample point using its K-nearest neighbors provided by the

metric. Form a symmetric affinity matrix using ωi and apply the spectral clustering.
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Fig. 2. Left(A) The secant chord approximation of a point on a smooth curve by its neighbors.
Center(B) Two semi-circles. There are three possible secant chord approximations of x by the three
sides of the shaded triangle. Right(C) The shaded surface denotes the appearance manifold M and
the dashed lines are the orbits of the affine group G. The projection map π sends each point x in
M to the corresponding point [x] ∈ M/G. The solid circles denote the sample points. In order to
construct the local linear structure in M/G, we have to move the sample points along the orbits to
produce ”virtual” samples, denoted by the triangles.

2.3 Affine Symmetry and Quotient Spaces

As we mentioned earlier, the presence of the 2D affine group distinguishes the
image clustering problem from the general data clustering problem. The task
now is to put both the metric and local linear structure into an affine invariant
setting (as best as we can). Affine invariant L2 metric and many of its variants
have been studied before in the literature [5, 14, 15], etc. Our effort is to propose a
method for defining local linear structures that are affine invariant; in particular,
we want to reformulate Equation 1 in an affine-invariant way.

We will explain this with the mathematical notion of a quotient space [16].
In general, when there is a group G acting on a manifold M , one can associate
this action with an abstract topological space M/G, the quotient space. Loosely
speaking, the space M/G parameterizes the orbits of the group action. See Figure
2(C). The important point is that any quantity defined in M that is invariant
under the G-action can be naturally defined as a derived quantity in the space
M/G. For instance, if we have a G-invariant metric on M , this metric then in
turn defines a metric on M/G.

Specializing to our clustering problem, the manifold M is the union of the
appearance manifolds, {M1, · · · , MN}, and the group G is the 2D affine group.
We have the natural projection map π : M → M/G which takes each point x
of M to the point [x] ∈ M/G which parameterizes the orbit containing x. The
manifolds {M1, · · · , MN} now descend down to M/G to form {M̃1, · · · , M̃N}.
By speaking of affine invariant local linear structure, we are speaking of the local
linear structures of these ”manifolds” 9, {M̃1, · · · , M̃N}.

To compute the local linear structures of {M̃1, · · · , M̃N}, we can mimic the
standard slice construction for quotient spaces [16]. The idea is that for each
point [x] of M/G, we can compute its local linear structure by lifting the com-
putation to a sample point x ∈ M such that π(x) = [x]. At each such point

9 Demonstrating the quotient space is actually some “nice” geometric object is gen-
erally a very delicate mathematical problem [16]. It is not our intention here to
rigorously define the space M/G. Our goal is to use the idea of quotient space to
explain the motivation of the algorithm and in the next section, to compare our
algorithm with other previous algorithms.



7

1. Inputs
A collection of unlabelled images {I1, · · · , In}. Considered the images as data
points {x1, · · · , xn} in the image space IRs, and the number of clusters N .

2. Use Metric to Choose Neighbors
For each data point x, compute a set of K nearest neighbors using the distance
measure dG(x, y) defined above.

3. Use local linear structure
For each x and its K-neighbors {x1, · · · , xK} determined in the previous step, let
{y1, · · · , yK} be the points in IRs such that yi = γ(xi) for some γ ∈ G and yi

minimizes the distances between x and all points on the orbit of G through xi.
Using yi’s to linearly approximate x by determining a collection of K non-negative
real numbers ωi that minimizes the objective function

‚‚‚ x −
KX

i=1

ωiyi

‚‚‚
2

L2
, with the constraint that

KX

i=1

wi = 1

4. Use ωi as the affinity measure
Define an affinity measure dΩ between two data points xi and xj : dΩ(xi, xj) =
min(1/ωij , 1/ωji) where ωij is the coefficient computed in the previous step for
xi. If xj is not among the K-neighbors of xi, ωij is set to 0. Apply the spectral
clustering algorithm (e.g., [8]) using this affinity to yield the final clustering result.

Fig. 3. The clustering algorithm.

x, we take a ”slice” of the group action, i.e., a linear subspace centered at x
that is orthogonal to the G-action through x and we analyze the local linear
structures on the slice. See Figure 2.(C). For each sample point x we find a slice
S. We project all other sample points down to S using G, i.e. for a sample point
y, we find a γ ∈ G such that γ(y) ∈ S. Note that such γ may not exist for
every y but we only need a few such ys to characterize a neighborhood of x. Let
{y′

1, · · · , y′
s} be the projected points on S. We use the L2 metric in S to select

the right neighbors of x, say, {y′
1, · · · , y′

K} and use them in defining the local
linear structure at [x] via Equation 1.

In the actual implementation, we modify the slice construction outlined
above. Instead of actually computing the subspace S, we determine the K neigh-
bors {y′

1, · · · , y′
K} by using the ”one-sided distance” [14]. For each input sample

y, the ”one-sided distance” is defined as

dG(x, y) = min
γ∈G

{
min

{ ‖x − γ(y)‖2
L2, ‖y − γ(x)‖2

L2

}}
.

Although dG(x, y) is not a metric, it still allows us to define the K-nearest neigh-
bors of x. The K neighbors {y′

1, · · · , y′
K} of x above are just {γ1(y1), · · · , γK(yK)}

with each γi minimizes the one-sided distance between x and yi.

3 Related Work

In this section, we compare our algorithm with some of the well-known image
clustering algorithms in the literature. Needless to say, the 2D affine group has
a long history in the computer vision literature. In particular, intensive effort
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has been focused on studying (quasi-) affine invariant metric such as the tangent
distance e.g. [15, 17]. For image clustering, affine invariant metric has made its
appearance in the work of Fitzgibbon and Zisserman [5, 14]. Most of the effort in
these two papers has been focused on designing an affine invariant metric that
will be effective for clustering. In the language of the quotient space, they are
doing clustering on M/G using metric information alone. Our algorithm also uses
the metric information in M/G but it also explicitly tries to cluster ” manifolds”
in M/G. Although good clustering results can be obtained by considering metric
alone, we believe that by incorporating both the metric and local linearity, it
offers 1) a more effective clustering algorithm and 2) a more complete geometric
description of the clustering algorithm.

Another well-known image clustering algorithm that explicitly uses the con-
cept of the appearance manifold is [4]. However, there are two major differences
between our work and theirs. First, the affine symmetry is absent in [4]. One
of the main themes of this paper is that the action of the 2D affine group is of
central importance in formulating any image clustering problem. Second, there
is an important difference between our concept of local linearity and theirs. In
[4], the concept of local linearity is embodied in the idea of tangent space of the
appearance manifold; therefore, PCA is used to estimate local linear subspaces.
In contrast, our concept of local linearity is on how best the ”neighbors” can
linearly approximate a given sample point, and it is formulated through Equa-
tion 1. This concept of local linearity also allows non-geometric interpretation in
terms of image comparisons using parts of objects as in [18]; however, it is not
clear if there is a non-geometric interpretation of the tangent spaces used in [4].

[2, 3] are two other interesting and related papers on image clustering. Their
approaches and ours are fundamentally different in that our algorithm is com-
pletely image-based while their algorithms focus on extracting salient image
features and incorporating more sophisticated machine learning techniques for
clustering. However, comparisons between their experimental results and ours
will be made in the next section.

4 Experiments

In this section, we report our experimental results. Our image clustering algo-
rithm, as detailed in Figure 3, has been implemented in MATLAB. Two different
types of image data were used to test the algorithm, images of 3D objects and
images of human faces. Substantial variations in appearances are observed in
all image datasets. The main difference between these two types of datasets is
the variation in surface texture. For the former type, the surface texture varies
greatly and local image features (such as corners) can be more reliably extracted.
Human faces, on the other hand, have much limited variation in surface tex-
ture and local image features become less useful. Traditionally, these two differ-
ent types of image data were attacked separately using feature-based methods
(e.g. [2]) and appearance-based methods (e.g. [1]), respectively. However, the
results below show that our algorithm is capable of obtaining good clustering
results for both types of images.
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(A) (B) (C)

(D) (E)

Fig. 4. (A): Representative images of objects in COIL20 (B): The ten vehicles in VEH10.2 (C):
The ten individuals in FACE10 (D): Sampling frequency. First 4 rows are images of one object
from COIL20, next 2 rows from COIL20.2, and last row from COIL20.4 (E): Pose variation in
FACE10.

Except for the affine-invariant metric dG(x, y), the implementation is straight-
forward and it follows closely the steps outlined in Figure 3. Given two images,
I1, I2, dG(I1, I2) is computed as follows. First, we define a Gaussian distribution
p on 2D affine group centered at the identity. Since we only consider small affine
corrections, p can be expressed in a local coordinates system centered at the
identity by expressing each (small) affine transformation in terms of the usual
six parameters (a 2x2 matrix plus translation). Using these six parameters, p is
a Gaussian distribution with diagonal covariance matrix. Next, we determine an
affine transformation γ such that it minimizes the function

E(γ) = min
{

dL2(γ(I1), I2), dL2(I1, γ(I2)
}

where dL2 is the usual L2 distance metric between two images. γ can be found
using gradient descent [19]. dG(I1, I2) is then defined as the sum E(γ)− log p(γ).
The reason for incorporating the Gaussian p(γ) is to penalize “over-corrections”
by large affine transformations [14].

4.1 Datasets

In this subsection, we fix the notations for various image datasets we used in
the experiments and give brief descriptions of the datasets. For images of 3D ob-
jects, we use the COIL datasets from Columbia, which are popular datasets for
validating object recognition algorithms. There are two COIL datasets, COIL20
and COIL100. They contain 20 and 100 objects, respectively. For both datasets,
the images of each object were taken 5 degrees apart as the object is rotated on
a turntable and each object has 72 images. Since this sampling is quite dense,
we ”sub-sampled” the image collections to make clustering problem more inter-
esting. We let COIL20.2 denote the collection of images obtained from COIL20
by sub-sampling it with a factor of 2. So COIL20.2 contains the same number of
objects as the original COIL20 but with half as many images per object. Sim-
ilarly, COIL20.4 denotes the collection obtained from COIL20 by sub-sampling
it with a factor of 4 and so on. From COIL100.2, we placed all vehicle images
in this collection together to form a new dataset, VEH10.2. The images of these
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vehicles have similar appearances and therefore, they offer a challenging dataset
to test our algorithm. For images of human faces, we collected video sequences
of ten individuals to form ten image sequences with each sequence containing 50
images. Pose variation in this collection is quite large and because of the differ-
ences in individual motion, the image sequences do not have uniform variation
in pose. This dataset will be denoted by FACE10.

4.2 Results

The experimental results are reported in Table 1. As is clear from Table 1, our
algorithm produces good clustering results for all datasets except COIL100.4.
The algorithm’s performance on COIL100 is not surprising considering that there
are 100 objects in COIL100.4 and the images are rather sparsely sampled (every
20 degrees). Error rates are calculated as the ratio of the number of misclustered
images over the number of images10. The error rates are shown together with the
parameter K which defines the size of the local neighborhoods. We also mention
that there are clustering results on COIL20 database reported in [2]. We can not
translate their definition of errors into ours. However, they do report non-zero
error rate while our clustering algorithm achieves a perfect clustering result for
the COIL20 dataset.

Table 1. Clustering results of our algorithm

Face10 Coil20 Coil20.2 Coil20.4 Veh10.2 Coil100.2 Coil100.4

Error 0.00% 0.00% 5.14% 19.44% 11.11% 20.69% 34.89%

K 10 8 8 8 3 6 10

4.3 Comparison with other clustering algorithms

Table 2 lists the result of comparing (on four different datasets) our algorithm
with some standard off-the-shelf algorithms. First, two standard clustering algo-
rithms, K-means and spectral clustering algorithm [8] with the usual L2-distance
metric, are compared with our results. It clearly demonstrates that direct L2

comparisons without affine-invariance are not sufficient at all. Next, we incor-
porate affine-invariance but without using local comparisons (Affine+Spectral).
This is the ”one-sided” distance measure [14] and again, it is still not able to
produce good clustering results. Next, we show that by incorporating local lin-
ear structure in the algorithm, it does indeed enhance the performance of the
clustering algorithm. Note that in our framework, once a neighborhood struc-
ture has been determined, we exploit the local linear structure to cluster points
in the neighborhood. To show that this is indeed effective and necessary, we
replace this step of our algorithm with direct metric comparisons. That is, we

10 For each cluster emerged from the clustering result, we try to match it with the
known clusters (ground-truth). Once the one-to-one map between the new clusters
and known clusters is computed, the error ratio can be calculated accordingly. For
instance, a random assignment of a collection of N clusters of equal size will produce
an error rate of N−1

N
according to our definition.
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Fig. 5. Images, their neighbors and the local linear structure, ωi’s.

are computing local affinities based purely on the ”one-sided” distance measure
(Affine+K-NN+Spectral). We expect that our algorithm will be an improvement
over this method because of our use of non-metrical information, and the results
do indeed corroborate our claim.

Table 2. Comparison with other clustering algorithms

Datasets
Algorithms Coil20.2 Coil20.4 Face10 Veh10.2

Our algorithm 5.14% 19.44% 0.00% 11.11%

Affine+K-NN+Spectral 7.36% 21.11% 13.00% 27.50%

Affine+Spectral 10.14% 25.83% 22.00%* 40.00%

Euclidean+Spectral 35.14% 33.06% 25.60%* 61.67%

Euclidean+K-means 39.58% 48.06% 46.00% 74.44%

* Spectral clustering results indicate the results may not be robust

Finally, in Figure 5, we illustrate several results of our local linear estimates,
i.e., the ωi. Although the K-nearest neighbors of an image generally contain
images of other objects, in each case, ωi correctly pick out the right images to
form strong affinities.

5 Concluding Remarks

In this paper, we have proposed an image clustering algorithm, and we have
demonstrated with a number of experiments that our algorithm is indeed effec-
tive for clustering images of 3D objects undergoing large pose variation. One
obvious limitation of our algorithm is that we do not explicitly model the il-
lumination effect. However, [11] has demonstrated that it is possible to cluster
images with illumination variation using global linear structures. How best to
incorporate our local structure and the global one in [11] into an effective image
clustering algorithm that can deal with both lighting and pose variations will be
a challenging and interesting research direction for the future.
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