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Abstract. This paper presents a novel and effective Bayesian belief net-
work that integrates object segmentation and recognition. The network
consists of three latent variables that represent the local features, the
recognition hypothesis, and the segmentation hypothesis. The probabil-
ities are the result of approximate inference based on stochastic simula-
tions with Gibbs sampling, and can be calculated for large databases of
objects. Experimental results demonstrate that this framework outper-
forms a system in which object segmentation and recognition are treated
as two independent processes.

1 Introduction

The recognition of objects in cluttered real-world scenes is a complicated task
for computer vision systems. Traditional approaches that first try to segment a
scene into its constituent objects and then recognize these objects have had little
success, since accurate segmentation is often a subjective measure derived from
a priori knowledge of an object. There are two potential approaches to overcom-
ing this problem. The first approach completely ignores the segmentation prob-
lem and tries to directly detect or recognize objects in cluttered, unsegmented
images. Under this approach, specific views of objects are frequently modeled as
constellations of localized features [1]. Various formulations of such techniques
have achieved excellent performance, and some can also work efficiently with
large object databases by sharing features within and between different object
models [2, 3]. The second approach tries to simultaneously segment and recognize
objects, an idea which seems consistent with our current understanding of visual
processing in primate brains [4] but has only recently been considered as a single
inference problem [5–9]. Yu et al. used a graph cut framework that combined
object patches with spatial configurations and low-level edge groups, to detect
and segment people [9]. Leibe et al. integrated local cues (image patches and
implicit shape models [6]) and global cues (silhouettes) to detect and segment
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Fig. 1. Left:A simple scene with three objects (Nuts Can, Suisse Mocha Box, and
Becks Beer) on a table.Middle: The segmentation and recognition results from our
proposed algorithm Right: Graphical representation of the proposed Bayesian belief
network.The shaded box nodes denote the evidences. The circles denote the hidden
variables. The ellipses denote the hypernodes composed of hidden variables. The big
plate around Fi and Gi comprises NI number of i.i.d. Fi and i.i.d. Gi.

multiple pedestrians in crowded scenes [7]. Their system run through a series
of interactive evidence aggregation steps, using implicit shape models to ini-
tialize segmentation of articulated objects, Chamfer matching to enforce global
constrains, and the MDL framework to solve ambiguities between overlapping
hypotheses. Tu et al. proposed a Bayesian framework that unites segmentation
and recognition based on a Data Driven Markov Chain Monte Carlo method [8].
Using two specific detection engines, they successfully segmented and classified
faces and text.

This paper proposes a novel probabilistic framework that merges object seg-
mentation and recognition in a Bayesian belief network. Instead of looking for
a joint interpretation of the whole image, we first obtain a set of promising
candidates using a one-pass model [2, 10] and then evaluate each candidate se-
quentially using a generative approach. Our model can simultaneously process
many objects using the same set of features to represent every object. We test
our system on a database of cluttered scenes, and demonstrate robust object
recognition and segmentation amid significant occlusions.

2 Problem Formulation

Given an observed image I, our goal is to detect the objects in the scene and
segment them from the background. Our system solves this problem by the
following steps. First, a set of promising object candidates are selected using a
discriminative method proposed by Murphy-Chutorian and Triesch [2], and the
identities of these candidates are denoted as {Vk, k = 1 · · ·K}. K is the number
of object candidates. For each candidate, we construct a generative model with
the same structure and use it to further evaluate whether this candidate is really
present. Denote the constructed set of graphical models as {Ωk, k = 1 · · ·K;β},
Ωk associated with the object of the identity Vk. β is the graphical structure
shared by every element of {Ωk} and will be described in section 3.

Given Ωk, we want to decide whether the object of the identity Vk is present
as well as to compute its segmentation. We formulate this problem in the con-
text of Bayesian inference. The results are denoted as the object hypothesis H
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and segmentation S (for simplicity, the subscript k is dropped.). This section
introduces all the observed and latent variables in a model Ωk.

2.1 Observations: I, Gi, NI , and E

Let I be an image with c × r pixels (we use c = 640 and r = 480). Let E
be a corresponding edge map obtained with the boundary detection algorithm
developed by Fowlkes et al. [11].

Let N I denote the number of detected interest points5 in I. The properties
of these interest points are represented by {Gi|i = 1, · · · , N I}, in which each
element, Gi, is a two-tuple vector, {gg

i , l
g
i }. lgi is the pixel location of the ith

interest point, and gg
i is a local feature vector at lgi , consisting of a 40-dimensional

Gabor-jet6 [2]. Two Gabor-jets J1 and J2 can be compared by calculating the
cosine of the angle between them:

Sim(J1, J2) =
JT

1 J2

||J1||||J2||
, (1)

where JT
1 denotes the transpose of J1 and || · || is the Euclidean norm.

2.2 Object Hypothesis H and Segmentation S

Assuming there are No types of objects in the database, Xh, is a random variable
indicating if the object Vk is present or not. An object hypothesis H can be
specified by

H ≡ {Xh, lh}, (2)

where Xh and lh denote object presence and its location in the test image,
respectively. Priors of Xh, lh are described as follows. P (Xh = 1) = P (Xh =
0) = 0.5. In our system, lh is computed in a 2D-Hough transform space which
partitions the image space into a set of 32× 32 bins [2] and then converted back
in c × r space. We assume that the prior P (lh) is uniformly distributed in this
c/32× r/32 2D-Hough space.

A segmentation S is represented by

S ≡ {ms, ls, cs, φs}, (3)

ls is the position relative to the location of the object hypothesis in the image.
ms is a discrete random variable indexing which of a number of trained contours
of the object Vk is present in the scene. Each index value is associated with a set
of contour points that represent the positions of a trained contour relative to the
reference position. To generate a contour in the training stage, we first manually
choose a small set of the contour points. Then we interpolate the rest of the
contour points by fitting a B-spline to these points. We repeat this process for
5 We use the interest operator proposed in [12] with the minimum distance between

interest points set to five pixels and the eigenvalue threshold set to 0.03.
6 Our Gabor jets contain the absolute responses of complex Gabor wavelets at 8

orientations and 5 spatial scales. For details, see [2].
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NVk training views of each object, constructing the value space of ms as a set
of indexes of these NVk contours. Note the superscript, Vk, allows for different
objects to have a different number of contour models associated with them. cs

is the scale of the contour and we make P (cs) uniformly distributed between 0.5
and 1.5. φs, the contour score of segmentation, is a continuous random variable
with a value domain between 0 and 1. Priors are all uniform distributions: e.g.
P (ms) = 1

NVk
, P (ls) = 1/(rc).

2.3 Shared Features {Fi}

In order to expedite the process of object recognition and segmentation, we adopt
the feature-sharing method proposed by [2] to cluster a large set of Gabor-jets
into a shared feature vocabulary. Each cluster center corresponds to a shared
feature and is associated with many different objects. In the training stage,
Nf shared features are learned along with their relative displacements from
the centers of the different objects. In our system, we use a vocabulary with
(Nf = 4000) features.

Given an image I, each Gabor-jet extracted at each detected interest point
will activate a shared feature. Let F be a collection of these active features and
denote them as

F ≡ {Fi} ≡ {f id
i , lfi |i = 1, ..., N I}. (4)

Each individual feature, Fi, contains the following attributes: f id
i denotes the

shared feature identity, and lfi denotes its location. As described in the last
paragraph, each shared feature has two attributes: the Gabor jet and the relative
displacements from the centers of the objects. We denote these two attributes: gf

i

as the Gabor-jet of the shared feature of the identity f id
i , and δf

i as the positions
relative to the centers of all the object hypotheses that share this feature. Both
gf

i and δf
i are learned in the training stage. The prior distribution, P (Fi), is

the product of P (f id
i ) and P (lfi ). We choose uniform distributions for both, i.e.

P (f id
i ) = (Nf )−1 and P (lfi ) = (rc)−1 .

3 Graphical Representation
The right-most diagram in figure 1 illustrates the structure of the Bayesian belief
network. Given this model, the following three important posterior probability
distributions can be decomposed into the equations,

P (Fi|{Gi},H, S,E) ∝ P (Fi|H)P (Gi|Fi),∀i

P (H|{Gi}, {Fi}, S, E) ∝ P (H)P (S|H)
NI∏
i=1

P (Fi|H), (5)

P (S|{Gi},H, {Fi}, E) ∝ P (S|H)P (E|S),

Each posterior probability in Equation 5 captures the problems of feature
activation, object recognition, and segmentation, respectively. The probabilities
on the right hand side of Equation 5 can be readily evaluated. The formulation of
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each likelihood is described in Section 3.1, and the inference process by stochastic
simulation is detailed in Section 3.2.

3.1 Likelihood Models

In this section we describe the conditional distributions of the graphical model
Ωk. Let Xfid

i
be a Bernoulli random variable describing the presence of feature

f id
i in I. Let d be a location offset of object Vk from feature f id

i . d is a function
of object identity and shared feature identity and this function is learned during
the training stage. P (Fi|H) is formulated as

P (Fi|H) ∝

{
P (Xfid

i
= 1|Xh) exp−α‖lh−lf

i
−d‖2

,∀i, if ‖lfi − d‖2 ≤ R
1

rcNf , otherwise
(6)

where P (Xfid
i

= 1|Xh), the associations between object models and shared
features, are learned during training [10].

P (Gi|Fi) represents the likelihood of a shared feature, Fi, activated by the
interest point, Gi, and can be denoted as

P (Gi|Fi) ∝ expSim(gf
i
,gg

i
) δ(‖lfi − lgi ‖),∀i. (7)

P (S|H) represents the probability distribution of the segmentation, S, given
an object hypothesis, H. P (S|H) can be denoted as

P (S|H) ∝ P (φs|Xh)
∑

(x,y)T∈A

δ(‖ls − (x, y)T ‖), (8)

where A is a 2D discrete space {−La, · · · ,+La}2. La = 10 in current implemen-
tation. We assume both P (φs|Xh = 0) and P (φs|Xh = 1) are Gaussian dis-
tributions parametrized by (µ0, σ0) and (µ1, σ1) respectively, which are learned
in the training stage. The learning algorithm of these two distributions is ex-
plained as follows. Given a training image, we used the same one-pass system [2]
to compute a set of image locations that each object is most likely present, i.e.
each object is associated with a image location, no matter whether the object
is present or not. Then for each object, we used our trained contours to match
edges in the image around the neighborhood of the associated location. We also
allow some transitions and scale variations during matching. Then we take the
average of the edge values at every point of a contour and call this a contour
score. This matching is repeated for all training images and for each object. In
the end we obtain two distributions of the contour score for each object, one
associated with its presence and the other associated with its absence. In this
paper, we will show that the associations between contour scores and object
presence help to improve recognition.

P (E|S) represents the likelihood of the segmentation, S, given an edge map,
E. Let Edge(E,S) compute the sum of edge values of E only at every point
location of the contour of identity ms, at a reference point ls and scaled by cs.
Let Length(ms) be the number of contour points of the contour ms. P (E|S) can
be denoted by

P (E|S) ∝ exp
1

Length(ms) Edge(E,S) . (9)
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3.2 Stochastic Simulation
So far we have presented our belief network. We use stochastic simulations for
approximate inference and the simulation is based on Gibbs sampling, a scheme
of Markov Chain Monte Carlo, which is commonly used to approximate the
Bayesian inference of a high-dimension probability distribution. Our algorithm
has two steps. First, we obtain a set of promising object candidates based on
Murphy-Chutorian and Triesch’s system [2]. The number of the candidates, de-
noted by K, determines the number of Gibbs sampling processes we need to
run. We construct K graphical models, {Ωk}, each of which associated with one
candidate. Second, we perform Gibbs sampling for each model to decide pres-
ence of each candidate and if present, its segmentation. The sampling process
is described as follows. When starting a new Gibbs sampling process, we use
the location of the candidate to initialize lf . Feature nodes are initialized in the
following way: for all i, the ith feature node is initialized by arg maxFi

P (Gi|Fi).
Then we draw a sample by drawing its components from their full conditional
distributions. T + Tm samples are drawn sequentially. The first T samples are
discarded and the next Tm samples are used to compute expectation of the
state value. Denote this expectation as θ∗. If Xh component of θ∗ is larger than
0.5, we recognize this object and segment it simultaneously. The algorithm is
summarized in Box 1.

3.3 Resolving Partial Occlusion

After all objects have been detected and segmented in the input image, the
partial occlusion can be further resolved by checking the edge consistency at
the boundaries of all the overlapped areas between each pair of objects. Ideally
the contour of a frontal object has stronger edge responses than that of the
occluded object does in the overlapped areas. By checking edge consistency we
can remove the overlapped areas from the segment of the occluded object and
achieve a better segmentation result. The detailed algorithm is summarized in
Figure 1.

4 Experimental Results

We evaluate our probabilistic framework using the CSCLAB [2] database, which
consists of 1000 images of (No = 50) everyday objects with significant occlusions
among 10 different cluttered backgrounds (See supplementary materials). The
1000 images are composed of 500 single object scenes and 500 multiple object
scenes. Each multiple-object scene has 3 – 7 objects. Each object model is trained
on all single-object scenes and the first 200 multiple-object scenes in which it
appears. All the objects are presented in different scales and positions and in
slightly different viewing directions. Scale varies over more than an octave.

Figure 1 and Figure 2 display several segmentation and recognition results in
different cluttered scenes. These results demonstrate the capability of our system
to deliver precise recognition and segmentation under difficult conditions that
include significant partial occlusions and scale variations. Segmentation results
are currently evaluated by human and about 60% of the results are rated as good
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Obtain a set of promising object hypotheses only using jet features
We pick a set of K object candidates based on the system proposed by Murphy-Chutorian and

Triesch [2]. A candidate is picked if the posterior probability of its presence of is larger than 0.1.
For each object candidate, k, we construct a graphical model, Ωk, to further verify whether this
object is present or not in an input image I.

Approximate the joint distribution of each model

Begin
Set a counter k = 1.
In model Ωk,

Observations: (I, E, {Gi, i = 1 · · ·NI})
I: input image; E: the edge map computed from I; {Gi, i = 1 · · ·NI}: the Gabor-jets at

interest points

Latent Variables: (H, S, {Fi, i = 1 · · ·NI})
H: the object hypothesis; S: the segmentation; {Fi, i = 1 · · ·NI}: a set of active features

Set L, the number of the objects found in the input image I, to 0.

Gibbs sampling
In model Ωk,

1. Initialization: Set the iteration counter t = 1 and set initial values
θ0 = (θ0

F1
, · · · , θ0

F
NI

), where θ0
F1

, · · · , θ0
F

NI
are assigned sequentially by

arg maxF1
P (G1|F1), · · · , arg maxF

NI
P (GNI |FNI ). We initialize θ0

S as follows. ms is

an integer randomly picked between 1 and NVk . The initial relative position, ls, is set to the
location of the k−th object candidate. cs is set to 1 and phis is set to 0.2, which is close to
the average contour score for the training images. To initialize θ0

H , we set the value of Xh to 1

and set the value of lh to the location of the k−th object candidate.
2. Obtain a new value θt = (θt

F , θt
H , θt

S) from θt−1 through successive generation of values

θt
Fi

∼ P (Fi|θt−1
H

, θt−1
S

, G, E), ∀i

θt
H ∼ P (H|θt−1

S
, {θt

Fi
}, G, E)

θt
S ∼ P (S|θt

H , {θt
Fi
}, G, E)

3. Change counter t to t + 1 and return to the previous step until t > T + Tm. (T=3000 and
m=1000).

Performing Recognition and Segmentation: Discard the first T samples and compute the

expectation value of the state using the next Tm samples. Denote this expectation as θ∗k. If the Xh

component of θ∗k is larger than 0.5, increase L by one and θ∗k is a new detection. Set k = k + 1.

Loop back to Step 1 to repeat Gibbs sampling for the next model until k > K.

End

Resolving Partial Occlusion (Optional): Resolve the partial occlusion by check-

ing the edge consistency in the boundary of the overlapped areas between each pair of detected

objects.

Box 1. Summary of the proposed stochastic simulation algorithm
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Fig. 2. Recognition and Segmentation results: the red lines depict the contour of each
object. The partial occlusion has been resolved correctly for each object

Fig. 3. ROC curves of the integrated system (pink line) and the recognition-alone
system (green line) Left: Overall performance Middle: Performance comparison with
respect to the “Red Cup” object Right: Performance comparison with respect to the
“Scotch Tape Box” object

results. Also note that some of the transparent objects in our database, such as
the clear cup and the water bottle, can still be segmented and recognized well
under this framework.

The ROC curves in Figure 3 compare the performance of the unified model
with the feed-forward recognition system that has no segmentation. Our unified
segmentation and recognition system performs well with a 87.5% true positive
rate at a 5% false positive rate on the difficult 50 object detection task. As can
be seen, by integrating segmentation, we achieve an increase in the detection
rate for any fixed false positive rate. Interestingly, the performance increase is
quite significant for some objects that were hard to recognize because of little
texture, small sizes, or strong occlusions. For example, for the object “Red Cup”,
the detection rate is improved from 39% to 60% at 1% false positive rate, and
from 87% to 96% at 5% false positive rate. For the object “Scotch Tape Box”,
the detection rate is increased from 74% to 85% at 2% false positive rate, and
from 85% to 96% at 4% false positive rate. Most objects show some improvement
under our integrated segmentation and recognition framework.
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The average computation time is around 9 minutes per image (640x480 res-
olution) on a standard Intel Pentium-4 CPU (2.40GHz) machine.

5 Conclusion
We proposed a novel probabilistic framework that integrates image segmentation
and object recognition based on a Bayesian belief network. Our model consists
of three latent nodes: object hypothesis, segmentation, and wavelet features. The
joint distribution is approximated by Gibbs sampling. Because the learned ob-
ject models provide a very good initial belief about object hypotheses in a very
fast feed-forward fashion, the simulated distribution more likely converge to the
true distribution in reasonable steps. This property would be even more benefi-
cial when in the future we extend the state space of our model, such as allowing
rotations in contour matching, or allowing part of the contour points to move
in order to achieve better segmentation and recognition. Due to the shared fea-
ture vocabulary, our system is scalable to recognizing large numbers of objects.
Experimental results demonstrate that our method outperforms a feed-forward
version of the system that does not try to segment the objects. Our probabilistic
framework can easily incorporate different types of features for both recognition
and segmentation, which could further improve performance.

Our current system can be extended to perform full 3-D object recognition
and segmentation (in contrast to the single pose version described here) by sim-
ply adding more training images of different poses of each object. An important
direction for further research is to develop a method for learning the contour
models without manual segmentation of training images. The segmentation re-
sult can be further improved using active contour algorithms such as Snakes [13]
and Deformable Templates [14].
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