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Abstract

This paper presents an online learning algorithm to con-
struct from video sequences an image-based representation
that is useful for recognition and tracking. For a class of ob-
jects (e.g., human faces), a generic representation of the ap-
pearances of the class is learned off-line. From video of an
instance of this class (e.g., a particular person), an appear-
ance model is incrementally learned on-line using the prior
generic model and successive frames from the video. More
specifically, both the generic and individual appearances
are represented as an appearance manifold that is approxi-
mated by a collection of sub-manifolds (named pose mani-
folds) and the connectivity between them. In turn, each sub-
manifold is approximated by a low-dimensional linear sub-
space while the connectivity is modeled by transition prob-
abilities between pairs of sub-manifolds. We demonstrate
that our online learning algorithm constructs an effective
representation for face tracking, and its use in video-based
face recognition compares favorably to the representation
constructed with a batch technique.

1 Introduction

Thanks to low cost cameras and powerful personal com-
puters, it is now possible to apply machine learning directly
on video streams and build interesting real-time applica-
tions such as video-based face recognition.

However, algorithms proposed in recent papers are only
able to perform the recognition task in real-time, while the
training process usually runs off-line in a batch mode. All
of training data must be stored, and the time complexity
is at least proportional to the size of the dataset. Hence,
batch training algorithms are not practical for huge datasets
such as lengthy video sequences, nor can they be applied
in tasks that require real-time training (e.g., video tracking
algorithms using a generative model of tracked object con-
structed from incoming video).

In contrast, online learning algorithms typically discard
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Figure 1. Learning an appearance manifold. A general-to-specific
online approach is presented to evolve a generic appearance man-
ifold M to a specific manifoldMk from a video sequence. The
complex and nonlinear appearance manifoldM can be approxi-
mated as the union of several simpler sub-manifolds and the con-
nectivity between them; here, each sub-manifoldCi is represented
by a PCA plane. The connectivity between the pose sub-manifolds
describes the probabilityP (Ci|Cj) of moving from one sub-
manifoldCj to another sub-manifoldCi at any time instance.

data as soon as it is processed and require only a small
amount of memory to store say model parameters or the
algorithm’s state. For processing of video streams, this is
very desirable.

In this paper, we present an online learning algorithm
for constructing a probabilistic appearance manifold. A
probabilistic appearance manifold [9], illustrated in Figure
1, is modeled as a collection of submanifolds (called pose
manifolds) in the image space and the connectivity between
them. In previous work [9], this representation was learned
by a batch training process from short video clips. First,
the K-means algorithm was applied to partition frames from
the training video into clusters. Images assigned to the
same cluster usually arise from neighboring poses. Princi-
pal component analysis (PCA [12]) was then applied to each
cluster to yield a low dimensional linear subspace approxi-
mation. The connectivity among these linear subspaces was



represented by a transition matrix whose elements capture
the likelihood that successive frames will be make a transi-
tion between a pair of pose subspaces.

The online learning algorithm introduced in this paper
constructs the appearance manifold in a different manner.
We start with a prior generic appearance manifold that
has been constructed from multiple pre-training video se-
quences of different instances of the class. In addition, we
have a video of a particular instance of the class. At each
time only one frame is available in the video sequence, and
the appearance manifold is updated using this frame. Over
the sequence, the generic appearance model evolves to an
object-specific appearance manifold. The online learning
algorithm consists of two steps. The first is a pose estima-
tion problem, where our goal is to identify the best sub-
manifold to which the current image of the specific object
belongs with the highest posteriori probability. The sec-
ond step is to incrementally update the appearance mani-
fold. The result from the first step is applied to find a set
of pre-training images that are expected to appear similar
to the specific object in other poses. Then all of the sub-
spaces in the appearance manifold are updated to minimize
the reconstruction error.

We have tested our algorithm for online learning of prob-
abilistic manifolds on video sequences of human faces with
significant 2-D and 3-D head rotation. The learned appear-
ance manifolds are shown to be effective for video-based
face recognition performance. In addition, our learned rep-
resentation has been applied within subspace-based video
tracking, and it outperforms the existing Eigen-tracking al-
gorithm [1].

2 Related Work
Although numerous appearance-based tracking and

recognition algorithms have been proposed, online learning
algorithms are only studied and applied in a small portion
of these algorithms [2, 7, 8, 13].

Brand [2] and Ross et al. [13] applied an incremental
SVD algorithm to tracking where appearance was repre-
sented by a single subspace. Since the appearance mani-
fold arising from large pose variation is highly nonlinear, a
single subspace is likely to be inadequate. Therefore such
trackers experience difficulties when the tracked target ex-
hibits drastic changes in appearance.

In Ho et al. work [7], a small neighborhood of the ap-
pearance manifold was represented as a single subspace
that is constructed online using the most recent images in
a video. This method can robustly track an object despite
large pose changes; however, since the learned appearance
model does not represent the whole appearance manifold,
its application to recognition is limited.

Jepson et al. [8] proposed an elaborate mixture model
and an online EM algorithm for tracking. Such a mixture
model captures stable properties of the image appearance

and assigns different weights to image pixels in motion esti-
mation. Our work bears some resemblance to their method
in the sense that our method also utilizes a mixture struc-
ture and an online update procedure. However, our algo-
rithm admits clear and concise geometric and Markovian
interpretations in terms of the appearance manifolds and the
pose transition probability in the image space. The advan-
tage of applying the complex structures in our framework is
that these structures provide better guidelines to the online
update process, yielding a more accurate appearance model
and leading to improved recognition and tracking perfor-
mance.

3 Mathematical Framework
Let M denote the generic appearance manifold, which

consists of a collection ofm simpler disjoint sub-manifolds,
M = C1∪· · ·∪Cm, with Ci denoting a sub-manifold. Each
Ci is assumed to be amenable to linear approximation by
a low-dimensional linear subspace computed using princi-
pal component analysis (i.e., a PCA plane). In the follow-
ing derivation, consider each sub-manifoldCi to be apose
subspacesince it captures the appearance of the object in
nearby poses.

In our framework,M can be easily trained by a batch
process, where we manually assign a set of face images
with similar pose intom clusters, and then apply PCA to
each cluster to yield the low-dimensional pose subspaceCi.
The transition matrix is initialized with a uniform distribu-
tion. In addition, for each person in the pre-training video
dataset, we compute the average face image in each pose.
For each pose subspaceCi, we gather a set of pre-training
exemplars{xi

1, · · · ,xi
Q} from Q people, wherexi

q repre-
sents the average face image of personq seen in posei.

Now, let {F1, · · · , Fl} denotesl frames of a video se-
quence of personk, and letIt be a region containing a face
cropped fromFt. We assume that each imageIt in the train-
ing video sequence is a fair sample drawn from the appear-
ance manifoldMk. Now consider the problem of doing
online updating of the appearance manifoldM upon seeing
a new face imageIt at timet in order to evolveM toMk.
We can subdivide this into the following two sub-problems.
The first is the pose estimation problem. The probabilistic
estimate of the pose manifoldCi∗

t given the current face im-
ageIt and the previous estimated resultCj

t−1 can be written
as:

Ci∗
t = arg max

i
p(Ci

t |It, Cj
t−1). (1)

The detailed algorithm is described in Sec. 3.1.
The second problem is how to update the appearance

manifoldM in order to minimize the followingL2 recon-
struction error:

Error2(M, {I1, · · · , It−1, It}) (2)



where{I1, · · · , It−1} denotes the previous face images in
the video. However, in online learning, we do not retain
{I1, · · · , It−1}. The available information aboutM are the
parameters characterizing each componentCi, such as the
centers and eigenbasis computed from{I1, · · · , It−1} dur-
ing previous updates. Another piece of information that we
have is the current observationIt. Sections 3.2 and 3.3 show
how to incrementally update each pose subspace and reach
a good approximation ofM. Finally, the incremental up-
date of the pose transition matrix is described in Sec. 3.4.

3.1 Pose Estimation

In a Bayesian framework, we wish to choose the pose
subspaceCi

t which maximizes the posterior probability
p(Ci

t |It, Cj
t−1) in Equation 1. We further assume thatIt and

Cj
t−1 are independent givenCi

t , and the transition probabil-
ity p(Ci|Cj) is time invariant. Using Bayes’ rule and these
assumptions, we have the following:

p(Ci
t |It, Cj

t−1) = αp(It|Ci
t , C

j
t−1)p(Ci

t |C
j
t−1)

= αp(It|Ci
t)p(Ci|Cj) (3)

whereα is a normalization term to ensure a proper proba-
bility distribution.
Ci is approximated by an affine subspaceL =

{c,Φ,Λ, P} constructed using PCA, wherec is the center
of the subspace,Φ is the eigenvector matrix, andΛ is the
corresponding diagonal matrix of eigenvalues, i.e.,Λjj =
λj . P records the number of image samples used to con-
struct pose subspaceL. Note that we omit the superscripti
for each pose subspaceL and its parameters to simplify the
notation in the following. The linear projection fromIt toL
can be written asy = (y1, . . . , yM ) = (Φ)T (It − c). Now
the likelihood probability can be expressed as the product
of two Gaussian densities [11]

p(It|Ci) = p(It|L)

=


exp

(
− 1

2 (
M∑

r=1

y2
r

λr
)

)

(2π)
M
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2
r


exp

(
− 1

2ρd2(It,L)
)

(2πρ)
N−M

2

 ,(4)

whereN denotes the dimension of the image space,M de-
notes the dimension of the pose subspaceL, andd2(It,L)
denotes theL2 distance between an imageIt and pose sub-
spaceL. The only parameterρ in Equation 4 can be chosen
as 1

N−M

∑N
i=M+1 λi [11], or simply 1

2λM+1 [3].
The two Gaussian densities in Equation 4 have important

geometric interpretations (See Figure 2). The first Gaussian
distribution can be interpreted as the likelihood of the in-
plane Mahalanobis distance which acts to bound the pose
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Figure 2. Geometric interpretation of the probabilistic distance
measure between an image to a pose subspace.

subspaceCi and decrease the false positive rate during pose
estimation. The second Gaussian distribution can be inter-
preted as the likelihood of the out-of-planeL2 distance from
a point to a subspace, and it works like a detection process
to decide which pose subspace the current imageIt belongs
to.

The prior probabilityp(Ci|Cj) stands for the transition
probability between pose subspaces, and it captures the
temporal dynamics of the face motion in the training video
sequence. The transition probabilityp(Ci|Cj) encodes the
temporal coherence of human motion as a face cannot move
suddenly fromCi to Cj if these two poses are not connected
or have a low probability (e.g., one cannot move from the
leftmost pose to rightmost pose without going through some
intermediate pose.).

3.2 Image Approximation in Other Poses

After we find out which pose subspaceCi∗ the current
imageIt belongs to, the next step is to update the appear-
ance manifoldM. Rather than just updatingCi∗, we update
all of the pose subspaces, even those with differing pose
than the training image. The idea is the following: If the
person in the current training image looks like a combina-
tion of some people from the pre-training set, say Frank and
Joe in pose i, then that person probably looks like the same
combination of Frank and Joe in all other poses as well.
More concretely, we first find a set ofK nearest neighbors
{zi∗

1 , · · · , zi∗
K} of It from the set of the pre-training exem-

plar face images{xi∗
1 , · · · ,xi∗

Q} for the pose subspaceCi∗.
Then we use theseK nearest neighbors to linearly approx-
imateIt by determining a collection of coefficientswr that
minimizes the objective function

min ‖It −
K∑

r=1

wrz
i∗
r ‖2

L2 , (5)

with the constraint that
∑K

r=1 wr = 1. Let {zj
1, · · · , zj

K}
correspond to the average face image of another pose sub-
spaceCj , wherezj

r andzi∗
r contains the same person’s face.

The coefficientswr computed in Equation 5 are applied to
the corresponding image set{zj

1, · · · , zj
K} to synthesize an

imageIj
t for posej by the following equation:

Ij
t =

K∑
r=1

wrz
j
r . (6)



The results is a set of synthetic face images for all other
poses. We then update each pose subspaceCj incrementally
using the corresponding real or synthetic image; the update
algorithm is detailed in the next subsection.

3.3 Incremental Subspace Update

After we synthesize images for each pose subspaceCi,
the next step is to update the current eigenspace model of
Ci with the new image sample. Numerous algorithms have
been developed to incrementally update eigenbasis as new
observations become available [2, 4, 5, 10]. However, only
the algorithm developed by Hall et al. [4, 5] updates the
mean vector and eigenbases without storing the covariances
or the previous training examples. In this section, we sum-
marize Hall’s algorithm [4] used in our framework to in-
crementally update the subspace parameters for a fixed sub-
space dimension.

Assume that we are trying to incrementally update the
current subspaceL specified by{c,Φ,Λ, P}, to a new sub-
spaceL′ specified by{c′,Φ′,Λ′, P +1} with the new avail-
able observationx in order to minimize the reconstruction
error in Equation 2. The parametersc, Φ, andΛ denote the
center, eigenvectors, and eigenvalues of the subspaceL re-
spectively.P denotes the number of images which are used
to construct the subspaceL. The minimization problem is
actually equivalent to solving the eigenproblem

S′Φ′ = Φ′Λ′, (7)

whereS′ is the new covariance matrix, andΦ′ andΛ′ are
the corresponding new eigenbasis and eigenvalues.

The projection of the new observation to the current sub-
spaceL and the orthogonal residue vector are given by:

g = ΦT x̄, (8)

h = x̄− Φg, (9)

wherex̄ = x− c.
Now the new meanc′ and new covariance matrixS′ can

be easily verified as:

c′ =
1

P + 1
(Pc + x) (10)

S′ =
P

P + 1
S +

P

(P + 1)2
x̄x̄T (11)

We then expand the old subspace by increasing its di-
mension by one to cover the new observationx. This is
done by simply adding the unit residue vectorĥ

ĥ =
{ h

‖h‖2
if ‖h‖2 6= 0

0 otherwise
(12)

to form a new orthonormal basis[Φ, ĥ]. The key idea is to
figure out a rotation matrixR to translate the new ortho-
normal basis to the eigenbasisΦ′ which expands the new
subspaceC ′, i.e.,

Φ′ = [Φ, ĥ]R. (13)

After substituting Equations 13 and 11 into Equation 7
and multiplying[Φ, ĥ]T in both sides, we obtain

[Φ, ĥ]T (
P

P + 1
S +

P

(P + 1)2
x̄x̄T )[Φ, ĥ]R = RΛ′. (14)

The covariance matrixS can be approximated as

S ≈ ΦΛΦT (15)

By substitution of Equations 15 and 8 and some simple
matrix algebra into Equation 14, Equation 14 can be further
simplified as(

P

P + 1

[
Λ 0
0 0

]
+

P

(P + 1)2

[
ggT γg
γg γ2

])
R = RΛ′,

(16)
whereγ is equal toĥT x̄. Now we have finished updating
all the parameters in the new pose subspace. The new mean
c′ is updated using Equation 10. The new eigenvaluesΛ′

are directly the solution of the eigen-problem in Equation
16, and the new eigenvectorsΦ′ can be computed by Eq. 13
onceR is available. Only the firstM new eigenvalues and
eigenvectors are finally retained. The size of the square ro-
tation matrixR is (M + 1) × (M + 1), whereM is the
dimension of the pose subspace. SinceM is a small value,
Equation 16 can be evaluated efficiently in real-time1. In
addition, Eq. 16 will converge to a stable solution as the
number of samplesP goes to infinity.

3.4 Model Construction

The online construction of the appearance manifold is
summarized as follows. For each incoming face imageIt

from the online training video of thek-th person’s head
movement, we first determine which pose subspace it be-
longs to by evaluating Equations 1, 3, and 4. Once this pose
subspaceCi∗ is found, we then synthesize all the possible
face images in other poses by Equations 5 and 6. With these
images, we evaluate all the equations from Equation 7 to 16
in order to update the parameters representing all pose sub-
spaces2. Finally, the transition matrix can be updated in-
crementally by counting the actual transitions between dif-
ferent pose manifolds observed in the training sequence:

1For the numerical stability, we can keep a slightly larger number rather
than exactly usingM during the incremental subspace updating. Then
after online updating, only the firstM eigenvalues and eigenvectors are
used to evaluate Eq. 4 during pose estimation.

2In our implementation, we reduce the effect of the synthetic images
to its pose subspace over time because it is only an approximation. This
can be done simply by adding another large counter toP increasing with
time. Also we can simply stop updating the synthetic image after some
time period.
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Figure 3. Online learning process. Part (a) shows frames from
an input video. Part (b) shows the evolution of the appearance
manifold where each row is the evolution of one pose subspace and
individual images are the PCA centers at a particular time instant.
The first column at timet = 1 shows the PCA centers for the
initial (generic) pose manifold. Moving to the right, the centers
are updated using the particular input frame shown in part (a) until
at timet = l, the final appearance manifold shown in the rightmost
column looks more like the person shown in (a) than the generic
person shown in the first column.

p(Cki|Ckj)′ =
Tijp(Cki|Ckj) + δ(It ∈ Cki)δ(It−1 ∈ Ckj)

Tij + δ(It ∈ Cki)δ(It−1 ∈ Ckj)
(17)

whereδ(It ∈ Cki) = 1 if It has the smallest probabilistic
distance to pose subspaceCki, and otherwise it is0. Tij is
the accumulated count of the actual transitions betweenCki

andCkj , and will be increased by one if the actual transition
happens in the current frameIt, i.e., δ(It ∈ Cki)δ(It−1 ∈
Ckj) = 1. The online learning process is illustrated in Fig-
ure 3.

3.5 Experimental Result of Learning Process

In this section, we experimentally demonstrate the effec-
tiveness of our online updating procedure. Our method is
compared to two other online update strategies. The input
video sequence is shown in Figure 4(a), and the resulting
appearance manifolds for the three methods are depicted in
Figure 4(b) The first column of Figure 4(b) shows the result
for our method.

The first alternative method is to estimate the closest
pose subspace to the incoming image, and only update that
subspace. The results for this are shown in the central col-
umn of Figure 4(b). We observe that without updating other
subspaces using synthetic images, the center of the fourth
pose subspace (Row 4) changes significantly from the ini-
tial center for the generic prior, and converges to an image
with a different pose.

In the second alternative method, we only use the generic
prior appearance manifold to estimate the pose for each in-
coming image. The linear subspace for each pose is only

(a) A specific person's video

(b) Learning results from three online update strategies

Figure 4. Comparison of different online update strategies. With
an input video of a specific person shown in (a), (b) compares
the pose manifolds learned using three different on-line strategies.
Five pose manifolds are constructed, and each row depicts the the
PCA center and three eigenbasis images of a pose manifold. The
left columns shows the result from our method, the center column
shows the result of online updating without synthetic images in
other poses, while the right column shows the result of online up-
dating without using the generic prior.

constructed from the training images of the specific indi-
vidual, and the prior model is not used at all. This amounts
to doing pose estimation followed by incremental subspace
learning for each pose. We can observe in Figure 4 that the
third pose subspace (Row 3) is constructed from a mixed
set of images coming from frontal, left and upper poses, and
the center and eigenbasis of the third pose subspace (Row 3)
looks blurry. In addition, the parameters of the fourth pose
subspace (Row 4) are not updated at all as no input image is
classified as coming from pose 4. Finally, the center of the
fifth subspace (Row 5) converges to the wrong pose as well.

4 Visual Tracking
Our online learning algorithm can be naturally extended

to a tracking algorithm. LetM denote the generic ap-
pearance manifold composed of a collection of pose sub-
spaceCi, and let{F1, · · · , Fl} denote a video sequence of
l frames. In our tracking work, we estimate the object loca-
tion in each frameFt at timet. We treat the object location
as a rectangular region specified by a setu of five parame-
ters: center location (in image coordinates), width, height,
and orientation. Letf(u, Ft) denote the cropping function
which returns a subimageI cropped from the rectangular
region, specified byu, from the current image frameFt.
Our tracking algorithm can be succinctly formulated as the
following optimization problem:

u∗
t = arg max

u
p(f(u, Ft)|Cj

t−1), (18)

wherep(I|Ci
t−1) is defined in Equation 4, and it denotes the

likelihood between the cropped imageI and pose subspace
Cj

t−1. u∗
t is the tracking result for framet. Our tracker eval-

uates Equation 18 by sampling a collection of sub-images



Online Pose Subspace Update Tracking Algorithm:

Input Parameters: (Ω, S)
Ω = {ωx, ωy, ωw, ωh, ωθ}: the set of five parameters for

sampling windows on the screen.
S: the number of windows sampled for each frame.

Output: ( I∗,u∗)
I∗: image of the tracked object.
u∗: the screen position ofI∗.

Model Parameters: (m,n,L, T,u∗)
m: the number of pose subspacesC1, . . . , Cm of the

appearance manifoldM.
M : the (common) dimension of the linear subspacesCi.
Ci: i-th pose subspace, represented by a local mean and

a set of orthonormal basis images.
T: a m-by-m probability transition matrix for the

tracked object where each entry is an estimated transition
probabilityp(Ci|Cj).

u∗ = (x, y, w, h, θ): the location of the object in image,
represented by a rectangular box in the image centered at
(x, y) and of size(w, h) with orientationθ.

Initialization :
The tracker is initialized either manually or by an

object detector in the first frame. LetI∗ be the initial
cropped image from the first frame. UsingI∗, the initial
Ci is determined by the maximum probabilistic likelihood
distance betweenI∗ and each pose subspacesCi.
Begin

1. Sample Windows: Draw S samples of windows
{W1, ...,Wr, ...,WS} in current image frame specified
by {u1, ..., ur, ..., uS} at various locations of differ-
ent orientations and sizes according to a5-dimensional
Gaussian distribution centered atu∗ with diagonal co-
variance specified byΩ.

2. Tracking : Rectify each windowWr to a19-by-19 im-
age and rasterize it to form a vectorIr in IR361. Com-
pute the probabilistic likelihood between eachIr and
the pose subspaceCi∗ found in the previous frame by
evaluating Equation 4. ChooseI∗ with u∗ that gives
the minimalL2 distance toCi∗ as the tracking output.

3. Model Update: Compute Equation 3 to find the pose
subspaceCi∗ which the current tracking resultI∗ be-
longs to. Follow the procedure describing in Subsec-
tion 3.2 and 3.3 and evaluate Equations 5 - 17 to in-
crementally update each pose subspaceCi of the ap-
pearance manifoldM. Loop back to Step 1 till the last
frame.

End

Figure 5. Summary of the proposed tracking algorithm.

specified by differentu based on a Gaussian distribution
centered atu∗

t−1
3. Once the tracking resultu∗

t is obtained,
the cropped imageIt can be used to perform pose estima-
tion as well as to incrementally update the subspace as in
Section 3. The detailed algorithm is summarized in Figure
5.

5 Experiments and Results

Figure 6. Samples of the videos used in the experiments. All se-
quences contain significant pose variation.

In this section, we report on the results of applying our
online learning approach to video-based face recognition
and tracking. Comparisons with well-known existing face
recognition and tracking algorithms are presented as well.

5.1 Data Preparation and Pre-training

Since there is no standard video database for evaluating
face recognition and tracking algorithms, we collected a set
of 82 video sequences of35 different persons for all of our
experiments. Each video sequence was recorded indoors at
15 frames per second over a duration of at least20 seconds.
Each individual appeared in at least two video sequences
with the head moving with different combinations of 2-D
(in-plane) and 3-D (out-of-plane) rotation, with expression
changes, and with differing speed. The pre-training process
requires a set of cropped face images taken from frames in
the video sequences. These cropped image regions were
obtained using a simple face tracker (a variant of the Eigen-
Tracking algorithm of [1]) and then manually cleaned up.
The images are down-sampled to a standard size of19× 19
pixels. Some examples of cropped face images are shown

3More sophisticated sampling techniques for non-Gaussian distribu-
tions (e.g., the CONDENSATION algorithm [6] for incorporating dynamic
changes in probability distributions) can also be applied.



A face undergoing significant pose and scale variation.

A face partially occluded by a black folder.

Figure 7. Qualitative tracking results for two different video sequences. Each row displays a set of five key frames from a video sequence.

in Figure 6. All of the video sequences will be made avail-
able for downloading athttp://vision.ucsd.edu/kriegman-
grp/research/. The main part of the pre-training process is
to compute the local linear approximation of the face ap-
pearance manifold for a “generic human” as well as the
connectivity between these local approximations We picked
15 (out of 35) video sequences to construct the generic
face appearance manifoldM. We manually assigned every
cropped face images into five different pose clusters. Then a
10-D pose subspace was computed from the images in each
cluster using PCA. As described in the previous section, the
connectivity between different subspaces can be modeled
by a transition matrixT , where each matrix entry is initial-
ized with constant probability.

5.2 Face Recognition

COMPARISON OFRECOGNITION METHODS

Method
Accuracy (%)

Videos w/o Videos with
occlusion occlusion

Prob. Manifold Recog. 95.6 94.0
w/ Online Learning

Prob. Manifold Recog. 97.2 92.9
w/ Off-line Learning

Eigenfaces 69.3 53.7
Fisherfaces 74.5 65.4

Nearest Neighbor 81.6 76.3

Table 1. Comparison of Recognition Accuracy for Different
Recognition Methods

In the face recognition experiment, we used the remain-
der of the video sequences (i.e., 20 of 35) to train the person-
specific appearance manifold starting with the generic ap-
pearance manifold using the online learning algorithm de-
scribed in Section 3. Once the appearance manifold for each
person was constructed, we performed recognition using the
algorithm presented in [9] with the other32 sequences of

these20 people. These test sequences included many diffi-
cult situations that occur in “real-world video streams,” such
as large pose variation, large scale change, partial occlusion,
and short term departure of the face from the field of view.

Table 1 shows the result of the probabilistic manifold
face recognition using our online training method, off-line
training method described in [9] as well as three other stan-
dard face recognition algorithms. The error rates were com-
puted by taking the ratio of the number of correctly recog-
nized frames across all test videos and the total number of
frames used in the experiment. The results show that the
probabilistic manifold face recognition algorithms with on-
line and off-line training are comparable with each other,
and they outperform other standard face recognition algo-
rithms.

5.3 Visual Tracking

In this section, we present qualitative studies of the ef-
fectiveness of our tracking algorithm that was summarized
in Figure 5. Figure 7 illustrates the tracking results for five
key frames from two different video sequences. The re-
sults demonstrate that despite significant pose variation, our
tracker delivered precise tracking results under difficult con-
ditions, such as partial occlusion and large scale changes.

Next, we qualitatively compare our tracking results with
two other trackers: the two-frame-based tracker and the
Eigen-based tracker [1]. The two-frame-based tracker is
the simplest appearance-based tracking algorithm because
the appearance model is simply the tracking result from the
most recent frame. The Eigen-based tracker tested in this
comparative study employed a single generic appearance
manifoldM to track all people, and this could be imple-
mented by our algorithm but without the online updating
procedure at Step3 of Fig. 5. Our implementation was
slightly different from the original Eigen-based tracker [1]
in that we used a collection of subspaces (an appearance
manifoldM) instead of a single global subspace.

Figure 8 shows the tracking results for five key frames
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Figure 8. Qualitative comparison among our tracker, two-frame-based tracker, and Eigen-based tracker. For each frame, the tracking result
is indicated by a white rectangle. Five key frames, the46nd,71th, 105th, 150th, and235th, of 261 frames in the test sequence are shown.

in three tracking algorithms. As the figure suggests, our
tracker outperforms the other two standard trackers. Al-
though both of these do not lose the target, one can easily
notice significant misalignments in some of the key frames
in Figure 8. The misalignment issues might make these
tracking results impractical for many image-based recog-
nition applications.

6 Summary and Conclusions
We have proposed an online learning algorithm to con-

struct an appearance manifold from a generic prior and a
video of an object instance. We have demonstrated that our
online learning algorithm is effective for video-based face
recognition and face tracking. One obvious limitation is that
our algorithm requires a generic prior model. Our tracking
algorithm therefore cannot track an object without knowing
and having a model of its class. How to learn an appear-
ance manifold online without a prior model is an important
direction in future work.
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