
SIGGRAPH 2001, Technical Sketch

Compressing Large Polygonal Models

Jeffrey Ho Kuang-Chih Lee David Kriegman

Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801

a. b. c.

Figure 1: a. This partition is induced from a simplified mesh; b, c.
Partitions usingz andy axes, respectively.

With the recent and rapid advances in digital acquisition technol-
ogy, meshes with millions if not billions of vertices are becoming
increasingly common. Existing mesh compression/decompression
algorithms are only effective if a representation of the mesh’s entire
topological and geometric structures (and other attributes) is small
enough to fit in memory. Yet for a mesh with a few million ver-
tices, one faces the possibility that there is insufficient memory on
a regular desktop computer for the entire model. Our approach to-
ward compressing these large models is to automatically partition
the mesh into submeshes of smaller size, depending on the available
local memory, and then to compress them separately.

The main purpose of the mesh partitioning is to divide the in-
put mesh into submeshes of roughly equal sizes, i.e., the partition
should be balanced. However, from the compression standpoint, it
is also desirable that 1) each region of the partition is “localized”
somewhere in the model, and 2) the boundary of each region is as
simple as possible. Straightforward mesh partitions usingx, y, z
coordinate axes or the level sets of some other linear functions gen-
erally do not satisfy these requirements. See Figure 1. Instead, we
propose a simple partitioning scheme based on a simplified mesh.
Using vertex clustering [1], we obtained a simplified mesh that is
typically 100 to 200 times smaller than the original. Each vertex of
the simplified mesh has a weight that is the number of correspond-
ing vertices in the original mesh that cluster to the given vertex,
and each edge carries a weight giving the number of collapsed tri-
angles that form the edge. The simplified mesh can be partitioned
as a weighted graph to obtain a balanced partition that minimizes
the edge cuts. The partition of the simplified mesh then induces
a balanced partition of the original mesh that usually satisfies the
two requirements above. Therefore, we have an in-core represen-
tation of a simplified mesh which is used as a kind of blueprint for
partitioning and hence compressing the original mesh.

Armed with this partitioning scheme, we have experimented
with two similar methods for compressing large polygonal meshes,
one compresses the connectivity losslessly while the other ignores
the boundary identifications. For the first method, we simply par-
tition the mesh and compress each submesh separately without re-
gard to how different cut boundaries should be identified. By cut
boundary, we mean the non-empty intersection between two neigh-
boring regions of the partition. The advantage of this approach is
that it is easy to implement and can be built immediately on top of
existing mesh compression software, e.g. [2, 3]. The vertices be-
longing to the cut boundaries are encoded twice; hence, depending
on the way the mesh is partitioned and the number of regions in the
partition, the number of duplicated vertices can range from as few
as 1% of all the vertices to as high as 20%; in the worst case, it is
possible that more than half of the vertices will be encoded twice.
This clearly illustrates the peril of using an arbitrary partition. Us-
ing a simplified mesh as a guide, our partitioning scheme will al-

a. b.

Figure 2: Two of our test models : a. Lucy from Stanford 3D
Scanning Repository. 28055742 triangles and 14027872 vertices.
b. David from the Digital Michelangelo Project. 8254152 triangles
and 4129614 vertices.

most never produce the worst-case partitions. It has to be noted,
however, that minimizing the number of vertices on the cut bound-
ary does not necessarily guarantee smaller size for the compressed
code. Nevertheless, we have observed through our experiments that
the compressed output produced by our partition scheme ranges
from 2% to 8% with an average of 4% less than the compressed
output from a ”bad” partition.

The second method encodes the connectivity losslessly. For this,
we have developed an efficient method to encode (and decode) the
cut boundaries based on identifying their connected components.
The main idea is to use run-length encodings for the regular ver-
tices of the cut boundaries while for the singular vertices, we simply
encode them directly. For meshes with mostly smooth cut bound-
aries, this part of the compressed code is generally negligible, even
for very fragmented and complex cut boundaries.

Currently, we have only used the connectivity of the simplified
mesh. Future research will be focused on how to utilize the geom-
etry of the simplified mesh to define non-linear prediction rules for
more efficient geometry compression.

Table 1 shows that a lossless compression ratio greater than 15
to 1 can be achieved on the meshes shown in Fig. 2.

References
[1] J. Rossignac and P. Borrel, “Multi-resolution 3d approxima-

tions for rendering complex scenes,”Modeling in Computer
Graphics, pp. 455–465, 1993.

[2] J. Rossignac, “Edgebreaker:connectivity compression for trian-
gle meshes,”IEEE Transaction on Visualization and Computer
Graphics, 5(1), 1999.

[3] C. Touma and C. Gotsman, “Triangle mesh compression,”
Proc. of Graphics Interface’98, pp. 26–34, 1998.

Model Original Compressed Ratio Bits/
File Size File Size Vertex

David 173 MB 10.1 MB 17 19.4
Lucy 533 MB 35.6MB 15.2 20.3

Table 1: Compression Results: 16 bit coordinate quantization was
used for David and Lucy. All compressions were done on a Sun
Sparc workstation with 58MB of RAM. Each submesh is com-
pressed using Edgebreaker of [2] and Parallelogram Prediction of
[3].


