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Abstract

In our previous work [1], we have demonstrated how to ar-
range physical lighting so that the acquired images of a hu-
man face can be directly used as the basis vectors of a low-
dimensional linear space. The “universal configuration”
computed in [1] has been shown to provide a good basis for
face recognition under a wide range of lighting conditions.
In this paper, we propose a more rigorous formulation of the
problem of computing the universal configuration. We pro-
pose a new objective functionOb and define the domain of
Ob, in which we seek our universal configuration. Recog-
nition experiments and other results reported in the paper
have validated this new approach.

1 Introduction

It is known that the set ofn-pixel images of any convex
Lambertian surface in fixed pose under all lighting condi-
tions is a polyhedral cone, the illumination cone, in the im-
age spaceIRn [2]. Therefore, the illumination cone contains
all the image variations of an object (with a fixed pose), and
it provides a powerful tool for recognizing objects across
a wide range of illumination variations. Indeed, successful
work on applying this theory to face recognition has been
reported, e.g. [3]. For most objects, the exact illumination
cone is very difficult to compute due to the large number of
extreme rays that make up the cones, e.g. for a convex,
Lambertian surface, there areO(n2) extreme rays. This
complicates both quantitative and qualitative studies of the
illumination cones.

However, several recent results have indicated that, al-
though it provides a theoretical basis for discussions on il-
lumination problems, the computation of the full illumina-
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tion cone may not be necessary. Using spherical harmon-
ics and techniques from signal-processing, Basri and Ja-
cobs have shown that for a convex Lambertian surface, its
illumination cone can be accurately approximated by a 9-
dimensional linear subspace, the harmonic plane [4, 5, 6].
The major contribution of their work is to treat Lambertian
reflection as a convolution process between two spherical
harmonics representing the lighting condition and the Lam-
bertian kernel. By observing that the Lambertian kernel
contains only low-frequency components, they deduce that
the first nine (low frequency) spherical harmonics capture
more than 99% of the reflection energy. Using this nine-
dimensional harmonic plane, a straightforward face recog-
nition scheme can be developed and results obtained in [4]
are excellent. One drawback of using the harmonic plane is
that the surface normals and albedos must be known before
the harmonic plane can be computed. In our previous work
[1], by exploiting the relationship between the illumination
cone and the harmonic plane, we demonstrated that there
exists a configuration (the universal configuration) of nine
point light source directions such that by taking nine images
of each individual under these single sources, the resulting
linear subspaceR spanned by these images is effective at
recognition under a wide range of lighting conditions. That
is, it is not necessary to know the surface normals or albedos
before computingR.

Although the recognition results reported in [1] are good,
the way that this universal configuration was computed is
somewhat ad hoc. In this paper, we delve deeper into the
computational aspect of our earlier work by proposing a
more systematic formulation of the problem of computing
the universal configuration. We propose a new objective
functionOb and define the domain ofOb, in which we seek
our universal configuration. We validate this new approach
by explicitly computingOb for a simplified problem. Sur-
prisingly, the results we obtained for this simplfied problem
echo the earlier results of [7].

This paper is structured as follows. In the next section,
we briefly summarize the ideas of illumination cone [2] and
harmonic lighting [4, 5]. The description of our main al-
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gorithms and the report of our experiment results are the
subjects of Section 3 and 4, respectively. The final section
contains a brief summary and conclusion of this paper.

2 Preliminaries

2.1 Illumination Cone

Let x ∈ IRn denote an image withn pixels of a convex
object with a Lambertian reflectance function illuminated
by a single point source at infinity, represented by a vector
s ∈ IRn such that its magnitude|s| represents the intensity
of the source and the unit normals/|s| represents the direc-
tion. LetB ∈ IRn×3 be a matrix where each rowb(x,y) in
B is the product of the albedo with unit normal for a point
on the surface projecting to a particular pixel in the image.
Under the Lambertian assumption,x is given by

x = max(Bs, 0), . (1)

wheremax(Bs, 0) sets to zero all negative components of
the vectorBs. If the object is illuminated byk light sources
at infinity, then the image is given by the superposition of
the images which would have been produced by the individ-
ual light sources, i.e.

x =
k∑

i=1

max(Bsi, 0), . (2)

Due to this superposition, the set of all possible imagesC
of a convex Lambertian surface created by varying the di-
rection and strength of an arbitrary number of point light
sources at infinity is a convex cone. Furthermore, any im-
age in the illumination coneC (including the boundary) can
be determined as a convex combination of extreme rays (im-
ages) given by

xij = max(Bsij, 0) (3)

wheresij = bi × bj are rows ofB with i 6= j. It is clear
that there are at mostm(m − 1) extreme rays form ≤ n
distinct surface normals [3].

In computer vision, it has been a customary practice to
treat the human face as a Lambertian surface. Although
human faces are not convex, the degree of non-convexity
is not serious enough to render the concept of illumination
cone inapplicable [3]. The only difference between the illu-
mination cone of a human face and a convex object is that
Equation 3 no longer accounts for all the extreme rays and
there are extreme rays which are the result of cast shad-
ows. Therefore, the formula for the upper bound on the
number of extreme rays is generally more complicated than
the quadratic expressionm(m − 1) above. This poses a
formidable difficulty for computing the exact illumination

cone (i.e. specifying all the extreme rays). Instead, a sub-
sampled illumination cone is always computed by sampling
lighting directions on the unit sphere, and Equation 1 is ac-
companied by a ray tracing to account for the cast shadows.

2.2 Lambertian Reflection and Spherical
Harmonics

In this section, we briefly summarize the recent work pre-
sented in [4, 5, 6]. Consider a convex Lambertian object
with uniform albedo illuminated by distant isotropic light
sources, andp is a point on the surface of the object. Pick a
local(x, y, z) coordinates systemFp centered atp such that
the z-axis coincides with the surface normal atp, and let
(θ, φ) denote the spherical coordinates centered atp. Un-
der the assumption of distant and isotropic light sources,
the configuration of lights that illuminate the object can be
expressed as a non-negative functionL(θ, φ). The reflected
radiance atp is given by

r(p) = λ
∫ ∫

S
k(θ)L(θ, φ)dA

= λ
∫ 2π

0

∫ π

0
k(θ)L(θ, φ)sinθdθdφ

(4)

with λ the albedo andk(θ) = max(cos θ, 0), the Lamber-
tian kernel. A similar integral can be formed for any other
point q on the surface to compute the reflected radiance
r(q). The only difference between the integrals atp andq is
the lighting functionL: at each point,L is expressed in a lo-
cal coordinate system (or coordinate frameFp) at that point.
Therefore, considered as a function on the unit sphere,Lp

andLq differ by a rotationg ∈ SO(3) that rotates the frame
Fp to Fq. That is,Lp(θ, φ) = Lq(g(θ, φ)).

The spherical harmonics are a set of functions that form
an orthonormal basis for the set of all square-integrable (L2)
functions defined on the unit sphere. They are the analogue
on the sphere to the Fourier basis on the line or circles. The
spherical harmonics,Ylm, are indexed by two integersl and
m obeyingl ≥ 0 and−l ≤ m ≤ l:

Ylm(θ, φ) = NlmP
|m|
l (cos(θ))eimφ (5)

whereNlm is a normalization factor guaranteeing that the
integral ofYlm ∗ Yl′m′ = δmm′δll′ , andP

|m|
l is the asso-

ciated Legendre functions (its precise definition is not im-
portant here; however, see [8]). In particular, there are nine
spherical harmonics withl < 3. One significant property of
the spherical harmonics is that the polynomials with fixedl-
degree form an irreducible representation of the symmetry
groupSO(3), that is, a rotated harmonic is the linear super-
position of spherical harmonics of samel-degree. For a 3D
rotationg ∈ SO(3):

Ylm(g(θ, φ)) =
l∑

n=−1

gl
mnYln(θ, φ). (6)
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The coefficientsgl
nm are real numbers and determined byg.

Expanding the Lambertian kernelk(θ) in terms ofYlm,
one hask =

∑∞
l=0 klYl0. Becausek(θ) has no φ-

dependency, its expansion has noYlm components with
m 6= 0. An analytic formula forkl was given in [4, 5].
It can be shown thatkl vanishes for odd values ofl > 1,
and the even terms fall to zero rapidly; in addition, more
that 99% of the L2-energy ofk(θ) is captured by its first
three terms, those withl < 3. Because of these numerical
properties ofkl, by Equation 4, any high-frequency (l > 2)
component of the lighting functionL(θ, φ) will be severely
attenuated. That is, the Lambertian kernel acts as a low-pass
filter. Therefore, for a smooth lighting functionL, the result
of computing reflected radiance using Equation 4 can be ac-
curately approximated by the same integral withL replaced
by L′, obtained by truncating the harmonic expansion ofL
at l > 2. Since rotations preserve thel-degree of the spher-
ical harmonics (rf. Equation 6), the same truncatedL′ will
work at every surface point.

2.3 Harmonic Images

From the above discussion, it follows that the set of all
possible images of a convex Lambertian object under all
lighting conditions can be well approximated by nine ’har-
monic images’, ’images’ formed under lighting conditions
specified by the first nine spherical harmonics. Except for
the first spherical harmonic (which is a constant), all others
have negative values and therefore, they do not correspond
to real lighting conditions. The corresponding ’harmonic
images’ are not real images and as pointed out by [4]: “they
are abstractions.” Knowing the object’s geometry and albe-
dos, these harmonic images can be synthesized using stan-
dard techniques, such as the ray-tracing.

For spherical harmonics, the spherical coordinatesθ, φ
are a little bit complicated to work with. Instead, it is
usually convenient to writeYlm as a function ofx, y, z
rather than angles. Each spherical harmonicYlm(x, y, z)
expressed in terms of(x, y, z) is a polynomial in(x, y, z)
of degreel. The first nine spherical harmonics in the Carte-
sian coordinates are

Y00 = 0.2821; (7)

(Y11;Y10;Y1−1) = 0.4886(x; y; z); (8)

(Y21;Y2−1;Y2−2) = 1.093(xz; yz;xy); (9)

Y20 = 0.3154(3z2 − 1); (10)

Y22 = 0.5462(x2 − y2); (11)

Figure 1 shows the rendered harmonic images for a face
taken from the Yale Database. These synthetic images are
rendered by sampling 4098 rays on the unit sphere, and

1. 2. 3.

4. 5. 6.

7. 8. 9.

Fig. 1: The nine simulated harmonic images of a face from Yale
Database. The light gray and dark gray indicate the positive and
negative pixel values. Since theY00 is a constant, the correspond-
ing harmonic image simply scales the albedo values as shown
in Picture 1. Pictures 4 is the harmonic image corresponds to
Y1−1 = z, which gives positive values for all pixels. Here, the
image plane is defined as thexy-plane.

the final images are the weighted sum of these 4098 ray-
traced images. Unlike [4] which only accounted for at-
tached shadows, these harmonic images also include the
effects of cast shadows arising from non-convex surfaces.
Therefore, all nine harmonic images contain 3D informa-
tion (i.e., the shadows) of the face. The values of the spher-
ical harmonics at a particular point is computed easily using
Equations 7–11.

2.4 Motivations

Equations 1 and 2 can be interpreted geometrically as fol-
lows. LetO denote a particular face.O defines a continuous
mapLO from S2 to the image spaceIRn:

LO(p) = Ip
O, (12)

whereIp
O denote the image ofO under a point light source

specified by the directionp ∈ S2 with a fixed intensity. The
illumination coneCO is simply the convex hull of the set of
rays generated by the image ofLO. The work of Basri and
Jacob [4] shows that there exists a good linear approxima-
tion of CO by the harmonic planeH. From its very defini-
tion, H can be considered as intrinsic toCO, since both are
completely determined by theB matrix. It is then natural
to study the relation betweenH andCO; and, in particular,
the relation between the continuous mapLO andH. Specif-
ically, we are interested in how the linear spaceH can be
best approximate by vectors in the image ofLO. If a rea-
sonable approximationR of H can indeed be generated by
the image ofLO, R can be obtained by taking the images of
O under a configurationCo of nine point sources; therefore,
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no information on surface normals or albedos is needed. In
the next section, we show that such anR does indeed exist.

The mapLO can be extended to a continuous universal
mapIL such thatIL mapsS2×IF to the image space defined
as (forO ∈ IF andp ∈ S2),

IL(O,p) = IpO, (13)

whereIF is the “space of faces”. We assume that a distance
function can be defined onIF such that for two similar faces
o ando′, o is close too′ in IF. The continuity of the univer-
sal mapIL would imply that the setsIL(o,S2) andIL(o′,S2)
should have similar shape and share similar intrinsic prop-
erties for neighboringo ando′. In particular, the configu-
rationsCo andC ′

o, considered as subsets ofS2, should be
very close. This allows us, instead of computing the config-
urationCo andCo′ separately, to “transplant” the configu-
rationCo directly to the illumination cones of its neighbors
such that the resulting linear space is still a good approx-
imation for the illumination cone ofo′ “sufficiently” close
to o. In Section 4, we show qualitatively that this is indeed
the case by using the configuration computed for one per-
son as the fixed configuration and computing all the trans-
planted linear spaces for different faces. We demonstrate
that these “transplanted” linear spaces are good approxima-
tions of their respective illumination cones by showing good
recognition results using these “transplanted” linear spaces.

3 Linear Approximation of Illumina-
tion Cone

In this section, we detail our algorithm for computingR.
Given a model (human face), we assume that we have the
detailed knowledge of its surface normals and albedos. Us-
ing the methods outlined in the previous section, we can
construct its harmonic planeH. Let C andEC denote the
model’s illumination cone and the set of (normalized) ex-
treme rays in the cone, respectively. By a normalized ex-
treme ray, we mean the unique point on the extreme ray
with magnitude1. For notational reason, we will not make
any distinction between a (normalized) extreme ray (which
is an image) and the direction of the corresponding light
source; therefore, depending on the context, an element of
EC can denote either an image or a direction.

3.1 Computing the Linear Subspace R

SinceR is meant to provide a good approximation of the
illumination cone, it is reasonable forR to satisfy the fol-
lowing two conditions:

1. R should be close toH

2. The normalized volumeC ∩R should be large.

SinceH has been shown to be a good approximation
of C, it is reasonable to assume that any subspace close to
H would likewise be a good approximation ofC; hence
the first condition. The second condition is also intuitively
clear, since one prefersR to contain as many real images
as possible. Our goal and challenge here is to formulate a
tractable computational problem for computingR starting
with these two simple conditions. Our first task is to define
the domain in whichR will be found and the second task is
to make the two conditions above mathematically precise.

Let GR(n, 9) denote the space of9-dimensional linear
subspaces ofIRn, the Grassmannian. LetID denote the
subset ofGR(n, 9) consisting of9-dimensional linear sub-
spaces generated by the extreme rays ofC. We defineID
to be our domain. UnlikeGR(n, 9), the spaceID is dis-
crete and contains at mostC(e, 9) pointse is the number of
extreme rays. While the harmonic planeH is generally in
the setGR(n, 9)\ID, the linear spaceR that we are after al-
ways resides inID. To extend our notation a bit further, we
define, for anyk, IDk as the subset ofGR(n, k) consisting
of k-dimensional linear subspaces generated by the extreme
rays ofC. Clearly,ID9 ≡ ID andID1 ≡ EC

3.2 How to compute the volumeR ∩ C?

Suppose the vectors inEC are all linearly independent and
R is generated by the extreme rays{v1, · · · , v9}. It is then
simple to show that

Proposition 3.1 With the assumption above, the intersec-
tion R ∩ C is simply the coneRC in R generated by
{v1, · · · , v9}.

Proof The proof is simple. Since if there exists ax ∈ R ∩
C but x /∈ RC , x can be written in terms of a collection
of extreme rays{u1, · · · , uk}, which is different from the
collection{v1, · · · , v9}:

x =
k∑

i=1

aiui =
9∑

i=1

bivi (14)

whereai are all non-negative. This immediately implies
a non-trivial linear relation

∑k
i=1 aiui +

∑9
i=1 bivi = 0.

Hencex must be inRC .

We define the normalized volumeR ∩ C as the volume of
the the hyper-cubeRS generated by{v1, · · · , v9}, that is
RS = {x ∈ R|x =

∑
aivi, 0 ≤ ai ≤ 1}.

The definition works exactly when the vectors inEC are
linearly independent. Since the number of extreme rays is
usually considerably larger than the dimension of the image
space, there are many non-trivial linear relations between
elements ofEC. Nevertheless, we will still define the nor-
malized volume ofR ∩ C as the volume of the simplexRS
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in this case. There are two reasons for this. First, the def-
inition is very simple and can be easily evaluated. Second,
in every computation involvingEC e.g [3],EC is always
replaced by a set ofk images such thatk � n. In this case,
the elements ofEC are almost always linearly independent.

The volume ofRS can be computed as the determinant
of {v1, · · · , v9}, whenvi are expressed in some orthonor-
mal frame. More precisely, applying the Gram-Schmidt to
{v1, · · · , v9}, let Q be the resulting matrix with orthonor-
mal columns; and letV be the matrix with columnsvi, the
volume ofRS is then computed as

vol(RS) = |det(V tQ)| (15)

The absolute value is necessary whenV andQ have differ-
ent orientations and give negative determinant values.

3.3 How to compute the distance betweenR
and H?

Since bothR andH are inGR(n, 9), one can use the natu-
ral notion of distance onGR(n, 9). Being a homogeneous
space of a compact Lie groupO(n), the orthogonal group
O(n) naturally induces a metric and hence a notion of dis-
tance onGR(n, 9). However, we propose a distance mea-
sure onGR(n, 9) that ties well with both conditions above.
Let PH denote the orthogonal projection onto the harmonic
planeH in the image spaceIRn. In a nutshell, our dis-
tance measure records the effect of the projectionPH on
the volume ofRS . If RH

S is the projection ofRS onto the
harmonic planeH, we considerR to be far away fromH
if PH shrinks the volume ofRS significantly and on the
other hand,R is consider to be close toH if PH does not
have significant effect on the volume ofRS . Note that being
an orthogonal projection,PH never increases the projected
volume. Hencevol(RS) ≥ vol(RH

S ).
Therefore, we define a distance measured(R,H) be-

tweenR andH as

d(R,H) = arctan(
vol(RS)
vol(RH

S )
)− π

4
(16)

Sincevol(RS)

vol(RH
S

)
≥ 1, d(R,H) is always non-negative. Notice

that in the definition ofd(R,H), it is not necessary forR to
be of dimension9. We letdi(R,H) denote the (extended)
distance measure whenR has dimensioni.

With both the volume and distance defined, we can de-
fine an objective functionOb on ID as

Ob(R) = vol(RS)/d(R,H). (17)

We defineR as the plane inID at whichOb takes its maxi-
mal values

R ≡ arg max
Rk∈ID

Ob(Rk) (18)

With our definitions,R always exists since the setID is
finite. Again, the objective functionOb(R) can be ex-
tended to linear spacesR with dimension different from9:
Obi ≡ vol(RS)/di(R,H) is a function defined onIDi. With
this definition, we have

Proposition 3.2 The maximum ofOb1 occurs atx ∈ EC
such that theL2-distance betweenx and H is minimal
among the elements of EC.

Proof The proof is a simple walk through various defini-
tions. By definition,Ob1 is a function onEC. Since
x ∈ EC has magnitude1, vol(xS) = 1. Therefore, ifx
maximizesOb1, x must minimized1(x, H). This implies
vol(xH

S ) is maximal. This condition says that the magnitude
of the projection ofx on H is maximal among elements of
EC. By Pythagorean theorem, theL2-distance betweenx
andH must be minimal.

3.4 Discussion

To satisfy Condition One, it is tempting to find the nine ex-
treme rays which are closest toH and defineR as the lin-
ear space spanned by these rays. We have observed that
these nine extreme rays are generally clustered around the
direct frontal direction and the resulting linear spaceR is a
poor approximation of the illumination cone. The explana-
tion, according to Condition Two, is because the resulting
intersectionR ∩ C has small volume. Geometrically, using
nearby (with respect toH) rays is no guarantee thatR will
be a good approximate ofH. Indeed, one can easily create
a counter-example in dimensional three showing the peril
of choosing nearby rays for this purpose, and the situation
becomes trickier whenR has a large co-dimension (which
is our case).

On the other hand, the collection of images which are
produced by extreme lighting conditions (lighting from the
sides, up/down or behind) generally produce large intersec-
tion volumeC ∩R, see Figure 2. This is because, these im-
ages are already (or close to being) orthonormal: the sets of
pixels illuminated in each image are disjoint. Therefore, the
volumevol(RS), according to our definition, will be close
to the maximal possible value of1. However, the resulting
intersectionR ∩ C is only on theboundaryof C and does
not contain the interior ofC. To correct these pathological
cases, we need Condition One to “pull the plane inside”.
Heuristically, the first condition favors lighting directions
which are nearly frontal while the second condition favors
extreme lighting conditions. In this sense, the two condi-
tions above complement each other.

3.5 SolvingR Iteratively

Having stated that the solutionR always exists does not
necessarily guarantee thatR can be found easily. In fact,
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Fig. 2: If R is the plane generated by these four images, the inter-
section volumevol(RS) is very close to1. Note that these four
images are almost mutually orthogonal in the sense that their mu-
tualL2-inner product is very close to0. This is quite obvious since
their non-shadow parts almost never intersect.

only when the size ofID is sufficiently small, we can com-
puteR directly from Equation 18 by enumerating every ele-
ment ofID. In [2], it was shown that the number of extreme
rayse is m(m − 1) wherem is the number of distinct sur-
face normals -m is typically greater than1000. To further
complicate the matter, the size ofID is in the order ofO(e9).
Therefore, in most cases, the direct application of Equation
18 is not viable. We propose a straightforward approach, us-
ing a greedy algorithm, to compute a good (but less than op-
timal) solutionR. We compute aR as a sequence of nested
linear subspacesR0 ⊆ R1 ⊆ . . . ⊆ Ri · · · ⊆ R9 = R with
Ri, i > 0 a linear subspace of dimensioni andR0 ≡ ∅ as
follows. First, we letECi denote the set obtained by delet-
ing i extreme rays fromEC. It follows thatEC0 = EC.
We will defineRi andECi inductively. Assume thatRi−1

andECi−1 have been defined (or computed). The setsECi

andRi are defined iteratively as follows:
Let xi denote the element inECi−1 such that

xi = arg max
xk∈ECi−1

Obi(Rk) (19)

Rk is defined as the space spanned byxk andRi−1. The
spaceRi is defined as the space spanned byxi andRi−1,
and the setECi is defined asECi−1\xi. The algorithm
terminates afterR9 ≡ R is computed. Note that by Propo-
sition 3.2, the first elementx1 = arg maxxk∈EC0 Ob1(Rk)
is simply the extreme ray inEC that is closest to the har-
monic planeH.

4 Experiments and Results

In this section, we report the results of two experiments we
have done to validate the new approach we have outlined in
the previous section. First, as mentioned earlier, it is gen-
erally very difficult to apply Equation 18 directly since the
size ofID ≡ ID9 is in the order ofO(e9) wheree the size of
the setEC. Therefore, we have decided in the first exper-
iment to drastically simplify the problem by choosing the
setEC to be a small set of sample points on the sphere.
Furthermore, we have reduce the domain fromID9 to ID5.
In this simplified problem, Equation 18 is applied directly to

produce a solution. The second experiment is a direct appli-
cation of the iterative steps we have outlined in Section 3.5.
The linear subspaceR is computed for one person in the
Yale Face Database and we “transplant” the resulting con-
figuration of nine directions to form the transplanted linear
subspaces for all faces in the database. We show that the
transplanted linear subspaces are good approximations of
their respective illumination cones by reporting good face
recognition results using these subspaces.

4.1 A Toy Example

Here, we will compute a5-dimensional linear subspace
R generated by rays taken from two collections of sam-
pled points onS2, IU and IU′. The coordinates frame of
the experiment is defined as such that the face is facing
the positivez-axis and we use the standard spherical co-
ordinates(θ, φ) on S2 to represent points on the sphere.
The first collectionIU contains35 points. We place4,
8, 10, 8 and4 points uniformly on the circles defined by
φ = 45◦, 65◦, 90◦, 105◦ and115◦, respectively. In addi-
tion, we place a point atφ = 0◦, which is the direct frontal
position with respect to the face. We also define the smaller
collectionIU′ of 21 points, by placing1 4, 6, and10 points
uniformly on the circles defined byφ = 0◦, 45◦, 90◦, and
125◦, respectively. Note that both collections contain light-
ing directions from behind the face (those withφ > 90◦) as
well as frontal directions.

Our experiment is straightforward: for each collection,
we enumerate all the possible5-dimensional linear planes
generated by rays in the collection. For each ray in the col-
lection, we render its corresponding image by using the nor-
mals and albedo values provided by the Yale Face Database
B. We simplify the problem further, by assuming thatR
contains the frontal directionφ = 0◦. Therefore, there are
4847 and46376 different planes forIU andIU′, respectively.
The final result is the plane that gives the largestOB5 val-
ues.

There are two reasons why we have restricted to this
much simplified problem:

1. Using Matlab, it takes almost three hours to compute
R using collectionIU for one individual on a 1GHz
PC. Our image size is168-by-192 and the image space
has dimension32256. Any larger collection of samples
would obviously make the computation even longer.

2. In an earlier work [7], Hallinan has shown empirically
that there exists a reasonably good5-dimensional ap-
proximation of the illumination coneC and a detailed
characterization of these five basis images (the eigen-
faces) were given. It is interesting and informative to
compare his results with ours.
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Fig. 3: The first four rows contain the20 images from
the collectionIU′ (without the image under the direct frontal
lighting, i.e. φ = 0). The bottom row lists the
configuration obtained by our algorithm. The configura-
tion of five lighting directions picked by our algorithm is
{(0, 0), (90,−60), (90,−120), (90, 120), (90, 60)}

For IU′, we have computed all the ten persons in the
Yale Face Database B with the normal and albedos val-
ues provided therein. Out of4845 different configurations,
our algorithm consistently picks one particular configura-
tion for all ten persons in the Yale Database. This configu-
ration of five directions is (in spherical coordinates(θ, φ)):
{(0, 0), (90,−60), (90,−120), (90, 120), (90, 60)}. This
configuration is symmetric with respect to the symmetric
plane of the human face. It contains frontal, sides and
top/down directions. For the collectionIU, we have run our
algorithm on four different individuals in the Yale Database
and the result is again quite consistent. Except in one case,
our algorithm picks the same configuration for all the test
models. See Figure 3.

Our results are in good agreements with Hallinan’s ear-
lier result [7]. In [7], the five eigenimages are character-
ized as by the lightings from above/below, sides and cor-
ners. This pattern agrees with the configuration we have
obtained. It has to be noted here that our results follow di-
rectly from the computational problem we defined in Sec-
tion 3 while Hallinan’s result is obtained empirically by ac-
quiring large number of images and applying the principal
component analysis.

A. B.

Fig. 4: A. The face used in computing the new configuration of
nine lighting directions. B). The plot of the nine directions pro-
duced by our algorithm. The polar axis is the elevation angleφ
and the azimuth angleθ goes to the usualθ in the 2D polar coor-
dinates. The circles represent the circles withφ = 25◦, 50◦ and
75◦, respectively.

4.2 Another Nine Points of Light

In this section, we experiment with the iterative algorithm
outlined in Section 3.5. We obtain 592 images by uniformly
sampling the sphere and taking those sample points with
non-negativez coordinate. We have implemented our algo-
rithm for computing the9-dimensional linear subspaceR
for one of the individual in the Yale Face Database B. For
each extreme ray forming a basis vector ofR, we plot the
direction of the corresponding light source as shown in Fig-
ure 4.

4.3 Recognition Results

According to the plan outlined in Section 2, we transplant
this configuration to the illumination cone of all the indi-
viduals in the Yale Face Database. To measure qualitatively
how well the resulting linear space approximates each illu-
mination cone, we apply these transplanted linear subspaces
in a recognition experiment to see if this configuration of
nine directions leads to effective face recognition compared
to using either the illumination cone or eigenfaces. Using
this set of nine directions, we construct a linear subspace for
each of the ten persons by rendering the images of each per-
son under these lighting conditions. These images are our
training images. In practice, the nine images should be real;
however, due to the lack of samples, we have opted for ren-
dering instead. We call our method the Nine Points of Light
prime(9PL’) method, as a companion to our earlier Nine
Points of Light method reported in [1]. The recognition
results of 9PL’ using this particular configuration of nine
lighting directions given above together with other methods
reported previously in [9] are shown in Table 1. Our results
clearly indicated that the “transplanted” linear subspaces are
indeed good approximations of their illumination cones.
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Fig. 5: Images of one of the10 individuals under the 4 subsets of
lighting. See [3] for more examples.

COMPARISON OFRECOGNITION METHODS

Method
Error Rate (%) vs. Illum.

Subset Subset Subset
1&2 3 4

Correlation 0.0 23.3 73.6
Eigenfaces 0.0 25.8 75.7
Eigenfaces 0.0 19.2 66.4
w/o 1st 3

3D-Linear subspace 0.0 0.0 15.0
Cones-attached 0.0 0.0 8.6

9PL 0.0 0.0 2.8
9PL’ 0.0 0.7 1.4

Cones-cast 0.0 0.0 0.0

Table 1: The recognition results using various different methods.
Except for the two Nine Points of Light (9PL and 9PL’) methods,
the data for all other methods were taken from [10].

For the recognition test, real images of ten faces each un-
der45 different lighting conditions are used, and the test is
performed on all of the450 images. The results are grouped
into 4 subsets according to the lighting angle with respect to
the camera axis, Figure 5. The first two subsets cover angles
0◦ − 25◦, third 25◦ − 50◦, and the fourth50◦ − 77◦.

5 Conclusion

Continuing our earlier work on computing the universal
configuration, we have proposed a more systematic formu-
lation by defining a new objective function. This new ob-
jective function is the quotient of two terms. One measures
the distance between a given linear subspaceR and the har-
monic planeH. The other is simply the normalized volume
of the intersectionR ∩ C. We also proposed an iterative
scheme that allows us to obtain a good (but not optimal)
linear approximation of the illumination cone. We demon-
strate the effectiveness of the iterative scheme by producing
a lighting configuration which gives good face recognition
results.
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